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The Use of Brain Plasticity 
for Better Heal th in the Elderly 
Through Both Mental and 
Physical Training

Neuroscience is the science of us-
ing the behaviour of the brain to 
determine how and why people 

behave as they do, especially when af-
fected by either advanced age or var-
ious types of stress or mental disorder. 
Using the newer technologies such as 
computers to help with the process is 
technically called computational neuro-
science, but because modern methods 
usually tend to always involve AI and 
data methods to a small or often rather 

large degree (outside the f ield of pure 
psychology as not needed for our re-
search here), we have decided to simply 
term it as modern neuroscience for sake 
of ease and also practically defined defi-
nition. Here, we say that care of elder-
ly patients is dependent on the use of 
neuroscience methods for better health 
in both physical and reactive terms 
through the use of tools that increase 
both cognitive and motor speed, we 
do well by f irst understanding the rea-
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The Improvement of Bio-
Informatics Education through 
Use of Biological  Concepts 
and Related Fields of Interest

C onsisting of how and why we 
use biological functions and 
processes to inform ourselves 

about various applications of biologi-
cal usefulness f rom treating cancer to 
less threatening aspects such as pro-
viding better plans for weight loss, we 
here state that bioinformatics as a f ield 
requires more foundations that draw 
from other f ields as highly interrelated 

and necessary for learning about biolo-
gy itself. Using the core competencies 
that make up biology schematics as 
bolstered by examples through its own 
shared f ield of viruses and its related 
but separate contributions to chemis-
try via the safety of food additives that 
provide both the variety and learning 
wealth needed of such a varying f ield, 
we begin with the words of Mulder et 
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al. Via the grasp of core concepts that 
produce the more basic learning mate-
rial as needed of biology students.

Biology: Not so Simple, but Simply 
Necessary
Three steps were used by our authors 
in developing the core competencies: 
(1) def ining the competencies needed 
for using bioinformatics, (2) def ining a 
variety of user prof iles describing dis-
tinct subgroups in need of training, 
and (3) def ining how the competencies 
will apply to PLOS Computational Biol-
ogy each user prof ile (scoring).i Map-
ping of bioinformatic competency was 
measured as applicable to: (1) the bio-
informatics user; (2) the bioinformatics 
scientist; and (3) the bioinformatics en-
gineer, with initial workshops f inding 

these categories unrealistically narrow, 
as much discussion generated around 
separating bioinformatics scientists 
f rom bioinformatics engineers.
The roles were therefore expanded to 
include include: physicians, lab tech-
nicians, ethicists and biocurators, sci-
entists (discovery biologist, academic 
bioinformatics researcher and core fa-
cility scientist), and engineers (bioin-
formatician in academia/research in-
stitute or software engineer). Similarly, 
scoring methods were also ineff icient, 
settling on the Bloom’s Revised Taxon-
omy terms that are knowledge, com-
prehension, application, analysis, syn-
thesis, and evaluation.ii

The current modelled f rame as mapped 
to competencies is given below (Table 
1).

Table 1. 
Mapping of competencies to bioinformatics user personas via Bloom’s Taxonomy.iii
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Levels of Use
Examples f rom (1) complete degree 
programs for which the competen-
cies have proven valuable to overall 
curriculum design or ref inement; (2) 
supplements to existing degree pro-
grams (i.e., specializations, tracks, cer-
tif icates); and (3) training resources 
outside the context of specif ic degree 
programs all work as a cohesive means 
to further working systems of educa-
tional designs, most especially in f ields 
of science.

Degree program-Africa
H3ABioNet (www.h3abionet.org) is a 
Pan African bioinformatics network for 
H3Africa that has “developed a bioin-
formatics training program for African 
scientists f rom the Human Heredity 
and Health in Africa (www.h3africa.
org) consortium.”iv Using bioinformat-
ics training for a broad range of audi-
ences through topics of genomics data 
analysis, selected existing master’s 
courses were used to def ine and aug-
ment model with additional electives 
relevant to specif ic institutions based 
on their research priorities at mainly 
the MA level.
Planning these modules to skills 
needed of a bioinformatics specialist 
to generalize a subset of knowledge 
that would be needed by all students 
of the subject is critical, as was done 
here, with electives then being a good 
option for covering specif ic research 
goals via the institution. Currently in 
use at at least two universities in Africa 
starting their f irst master’s programs, 
there emerged a need for more basic 
“introduction to bioinformatics” train-
ing as well. In response, H3ABioNet 
developed an Introduction to Bioin-
formatics course delivered remotely 
across multiple countries, the focus on 
simpler parts of the topic such as use 

of tools such as algorithms for biolog-
ical solutions in a practical environ-
ment of solving problems via personal 
experience.

Undergraduate and graduate 
research degree programs-US
Carnegie Mellon University offers de-
gree programs in computational bi-
ology at several levels, including a BS 
in computational biology (since 1989), 
an MS in computational biology (since 
1999), a PhD in computational biology 
(offered jointly with the University of 
Pittsburgh since 2005), and required 
training in computational biology ““or 
students primarily training for work in 
experimental biology.”v Making Intro-
duction to Computational Biology (ICB) 
a core requirement of every undergrad-
uate biological sciences major as a use 
of general requirement as universally 
applicable for all students in the f ield., 
while the Carnegie Mellon/University of 
Pittsburgh joint PhD in computational 
biology offers an example at another 
extreme of the spectrum: a full multi-
year training program for students ex-
pected to become experts in compu-
tational biology of any expertise, f rom 
research to teaching.

Undergraduate degrees at a small 
liberal arts college
Saint Vincent college began an bioin-
formatics program in 2005. With less 
than 20 students in the major, the pro-
gramme was split into two because 
students f rom the last 2 groups of the 
three that tended to enroll as: (1) stu-
dents who enjoyed both biology and 
computation and were good at both; 
(2) students who enjoyed biology but 
struggled with the programming 
courses; and (3) students who enjoyed 
programming but struggled in the up-
per biology courses, particularly labs.vi 
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The split meant that key courses be-
came somewhat divergent rather than 
the former mix of all maths and biol-
ogy, corresponding to bioinformatics 
users and bioinformatics scientists, as 
of 2013.
There also exist several certif ications 
offered by institutions, as well as proj-
ects such as the use of bioinformatics 
in clinical settings (such as the 100,000 
genome project in the UK that seeks 
to sequence the said number for bet-
ter-informed treatments) that allow a 
transition to the use of methods such 
as virology as a form bioinformatics 
that can, as genomics do, play an in-
valuable role through the power of 
adaptivity that both carry.

Viruses: Flexibility for Semi-Rigid 
“Separate Scientif ic Fields” (and 
Their Educational Tools)
Despite virology as an excellent partner 
to bioinformatics, little was done in col-
laboration apart f rom some pioneering 
work on HIV-1 and influenzavii, but such 
partnership is required in our era of big 
data to deal with the vast quantity of 
information that makes up forms of in-
formation such as DNA sequences as 

used in virology in a fluid manner that 
prioritizes eff iciency to the opposite 
that is bioinformatic use of detail at a 
slower pace. Below, the historical line 
of noteworthy viral problems that show 
how limited the current view of use ac-
tually is.
Virology is usually def ined as the study 
of non-organisms that cause disease 
in living creatures, but the biosphere 
actually contains an estimated 10 to 
the 31st power, 10 times the amount of 
bacteria but few even identif ied due to 
their “non-ills” status (at least, as far as 
we currently presume). Therefore, vi-
ruses as “only” parasites is an invalid-
ity that now means we can make use 
of their properties to add to research 
how viruses are able to safely transfer 
and store genetic information of their 
host population and influence entire 
biogeochemical cycles. without being 
pathogens.ix

New genome sequencing technolo-
gies that use tools of big data can now 
become methods to answer questions 
that might otherwise need lengthy 
and/or expensive processes rath-
er than simple replicative sequences 
that many types of safe viruses might 

Figure 1. 
Unknown/new viruses emerge all the time. Figure is an extended and redrawn version of 
https://www.microbiologysociety.org/publication/past-issues/zoonotic-diseases.htmlviii
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provide scientists in many forms, with 
many differing styles of functional re-
search uses based on the species/fam-
ily group.

The Tools

Virus-specif ic databases
A few virus-specif ic databases exist so 
far for virologists but a general data-
base for all viruses needs to be urgent-
ly developed, with EpiFlu is currently 
the most complete collection of genet-
ic sequence data of influenza viruses 
and related clinical and epidemiologi-
cal data, a result of the common inci-
dence of colds versus all other types of 
ill-bearing viruses.

Viral genome de novo assembly 
tools
There have been many tools developed 
for whole genome assembly, but are 
meant to assimilate the repetitive ele-
ments in the viral UTR, as the low and 
uneven read coverage mean little infor-
mation can be pulled f rom such a small 
genetic sample. However, algorithms 
dedicated for single-cell sequencing, 
such as SPAdes [22] or IDBA-UD [21] 
work well for tested samples, allowing 
at least a rudimentary form of educa-
tional eff iciency until methods prog-
ress.

Viral Phylogeny
Phylogenetic trees are a standard 
graphical model for viral phylogenies 
in the literature, but their use cannot 
account for “variation in evolutionary 
rate, lack of physical “fossil records” of 
viruses, and confounding evolutionary 
relationships between viruses and their 
hosts”x as comprising the descriptive 
elements that allow methodical analy-
sis of both evolutionary processes such 
the relationships between viruses and 

their hosts (including processes that 
create quick shifts such as horizontal 
gene transfer).

Virus annotation and genotyping
Genome annotation is the process of 
“identifying gene locations, functions, 
and the coding and non-coding regions 
of a genome.”xi GLUE an open-source 
software toolkit works well for storage 
and interpretation of sequence data, 
even with multiple sequence align-
ments (MSAs) existing-usually an issue 
due to conf ines of available space.
With correct identif ication in all in-
stances as is perhaps possible with 
GLUE students are therefore capable of 
determining pathogens with accuracy, 
and then multiplied for research use 
via PRiSM as a set of algorithms that 
creates primers for amplif ication and 
sequencing of short 7 viral genomes 
(with population diversity intact).
Last, we analyze the use of food addi-
tive categorization by Zhang et. al as a 
f ramework for how students in bioin-
formatics my make use of not only pro-
gressive AI for handling large datasets 
as an obvious solution, but learn to use 
resources f rom related f ields to more 
qualitatively assess how biology works 
in tandem with other sciences as inter-
nally with its own concepts as extend-
ing in more creative ways tha usually 
imagined.

And now, Practical Application (of 
Food) with AdditiveChem

Data and Its Integration
The model was creating by f irst, be-
cause food additives varies among 
countries, but here we mean anything 
that is added to otherwise bland pro-
duce: Food nutrition fortif iers, pro-
cessing aids, pigments, and spices,xii 
listing them in one place. Provided by 
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the United States (US), World Health 
Organization (WHO), and the Europe-
an Union (EU) for representative data-
set consisting of three: Additives ap-
proved by the US (FAAUS), approved by 
WHO (FAAW), and approved by the EU 
(FAAEU).
Substances are described with their 
additive name, FEMA number, Chemi-
cal Abstract Service (CAS) number, and 
related Code of Federal Regulation. In 
the EU databases, food additive data 
are identif ied by the additive name 
and E number (codes for substanc-
es that have been assessed for use as 
food additives within the EU), while the 
European Food Flavoring database are 
listed by the additive name etc. The 
database of 14,123 additives f rom the 
above there remained 9,064 unique 
food additives with a high level of food 
additive coverage for data use.xiii

Food additives regulation, usage 
specif ications, and acceptable daily 
intake
Usage specif ications are the most im-
portant reference data for the safe use 
of food additives, and numbered 8,896 
usage specif ications from the EU food 
additives and flavoring substances da-
tabases, and GSFA online database. 
Here, AdditiveChem also included 
12,336 linkages between food additives 
and the Code of Federal Regulation (for 
example, fumaric acid as mentioned in 
laws 73.129, 73.3030, 73.34531, 73.61532, 
173.21033, 175.10534, 175.32035, 176.18036, 
176.30037, and 177.260038).xiv

Acceptable daily intake (ADI) is also 
a signif icant measurement that lists 
amount of a specif ic substance as in-
gested daily over a lifetime without an 
appreciable risk, the key measure for 
food additives on a global scale-the 
higher the value, the safer the addi-
tive.xv

Search methods and algorithm
Using AdditiveChem, there are sever-
al retrieval methods by using chemical 
information processing and multiple 
algorithms such as structure retrieval, 
f ragment retrieval, similarity retrieval, 
maximum common substructure (MCS) 
retrieval, and text retrieval options.
xvi Structure retrieval is based on the 
SMILES matching method. To cite one 
example used in the study, the SMILES 
of all food additives were pre-calculated 
and stored in the database that is then 
used via similarity retrieval to match it 
to the SMILES of the molecule that is re-
quested through a search of any of the 
5 kinds above. For another, the ‘f rag-
ments’ used for searches are a set of 
connected atoms that may have associ-
ated functional groups, with particular 
ones usually corresponding to physical 
and chemical structures (and, as such, 
related biological function), such as 
azobenzene or methylphenol.xvii

Users and applications
Increasing use of searches to quickly 
separate useful information from the 
extraneous is becoming the norm in sci-
entific studies through computational 
biology use of large compound struc-
ture databases, such as the PubChem 
and ZINC, but the authors made use of 
AdditiveChem (http://www.rxnfinder.
org/additivechem/) a more specific da-
tabase “because it was manually cor-
rected by food chemistry scientists.”xviii 
Because it is seen and updated, this also 
means that it usually remains the most 
relevant source, with quality data always 
available through user participation-Up-
dated reports are published on the Addi-
tiveChem website homepage, while the 
various search functions are inclusive of 
many names that cover many chemical 
compounds in different scenarios (com-
parative table below).
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The Improvement of Bio-Informatics Education through Use of Biological Concepts and Related Fields of Interest

Ranging f rom detailed data for ad-
ditives to possible side-effects, most 
food additive molecules are pigments. 
After retrieval of the molecule (pos-
sibly even by drawing it), users can 
browse through the detailed data 
of each food additive via “molecu-
lar structure, chemical and physical 
properties, absorption and distribu-
tion potential, metabolism, excretion 
and toxicity properties, biosynthesis 
and biodegradation methods, usage 
specif ications, toxicological and risk 
assessment data, and targets in the 
human body.”xx

This information base then ensures 
that users can readily investigate if 
illegal food additives are potentially 
toxic or influence certain tissues. For 
example, “in-vivo absorption of small 
molecule compounds across the gut 
wall can be estimated f rom the perme-
ability of Caco –2”xxi, and a download 
function is made available so the user 

may have a compendium on hand as 
required to cover more advanced con-
cepts such as virtual screening or mo-
lecular docking.xxii

Conclusion
From the use of biology in ‘unrelated’ 
food additive chemistry to the use of 
viruses in a world absolutely f illed with 
them, aside f rom the common cold as 
we tend to catch it, we see observe that 
there is more than one way to skin a 
cat; indeed, this is absolutely required 
nowadays, because the cat has be-
come the size of a large mountain that 
threatens to crush any non-use of not 
only big data through AI means, but 
also absolutely requires use of informa-
tion f rom many other f ields of science 
if we are to solve larger questions such 
as cures for cancer by educating the 
next generation of students of bioin-
formatics with the appropriate training 
and responses.

Table 2. 
Summary of information provided by different food additive databases.xix

JECFA GSFA EAFUS EU FADB AdditiveChem

Laws and usage specification x √ √ √ x √

ADI √ x x x x √

Molecule structure x x x x √ √

Physicochemical properties x x x x √ √

Toxicology x x x x x √

Targets x x x x x √

ADMET properties x x x x x √

Taxonomy x x x x x √

Total entries 2911 296 3968 2928 2540 9064
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Endnotes
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... & Welch, L. (2018). The development 
and application of bioinformatics core 
competencies to improve bioinformatics 
training and education. PLoS computational 
biology, 14(2), e1005772

ii Ibid.
iii Ibid.
iv Ibid.
v Ibid.
vi Ibid.
vii Ibrahim, B., McMahon, D. P., Hufsky, F., 

Beer, M., Deng, L., Le Mercier, P., ... & Marz, 
M. (2018). A new era of virus bioinformatics. 
Virus research, 251, 86-90.

viii Ibid.
ix Ibid.
x  Ibid.
xi  Ibid.
xii  Zhang, D., Cheng, X., Sun, D., Ding, S., Cai, P., 

Yuan, L., ... & Hu, Q. N. (2020). AdditiveChem: 
A comprehensive bioinformatics 
knowledge-base for food additive 
chemicals. Food chemistry, 308, 125519.

xiii  Ibid.
xiv  Ibid.
xv  Ibid.
xvi  Ibid.
xvii  Ibid.
xviii  Ibid.
xix  Ibid.
xx  Ibid.
xxi  Ibid.
xxii  Ibid. 
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A r t i f i c i a l 
I n t e l l i g e n c e 
A p p l i c a t i o n s  f o r 
B r e a s t  C a n c e r

H ow can an age-old disease such 
as breast cancer be supported 
with artif icial intelligence? To-

day breast cancer is a predominant 
type of cancer that affects many wom-
en (and sometimes men) all over the 
world and the morbidity rates are still 
high. Artif icial intelligence holds the 
power to support medical technolo-
gies that can detect breast cancer le-

sions early on which is a signif icant way 
to reduce the yearly number of deaths. 
Artif icial intelligence-enhanced appli-
cations for devices such as MRIs and 
other imaging machines like mam-
mography and ultrasounds can offer 
more accurate and precise readings 
for physicians and radiologists in or-
der to treat breast cancer early on and 
make the necessary changes in ther-
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apy to prevent women all over the 
world f rom getting cancer or stopping 
it cold in its tracks (see Table 1).

Introduction
How often have we heard a f riend or 
loved one get breast cancer? Breast 
cancer has been prevalent in wom-
en for many decades if not hundreds 
of years. But how many of us actual-
ly know what breast cancer is? Breast 
cancer affects the tissue of the breast 
and revolves around the uncontrol-
lable growth of cells in this area that 
result in lesions or masses of cells 
that form a tumor. Breast cancer can 
remain in the breast area or move to 
other parts of the body. The statistics 
of breast cancer affecting women boil 
down to a 1 in 8 chance of getting it 
during their lifetime and for men the 
chances are 1 in 1000. Breast cancer 
tends to be genetically based and it is 
widely known that mothers can pass 
on the genes to their daughters and 
sisters can also share the genes prone 
to breast cancer. Many risk factors in-
clude familial ties and also revolve 
around whether or not a woman has 
had a benign case of cancer or if she 
has ever been treated with radiation 
or if she drinks alcohol. Many treat-
ments for breast cancer are readily 
available that include, in severe cases, 
a mastectomy which involves remov-
al of the entire breast tissue, removal 
of tumor(s), chemo or radiotherapy as 
well as hormone therapy.İ

Breast cancer is widely common and 
early diagnosis is important while it is 
known to be diff icult to diagnose. The 
more traditional methods of screen-
ing breast cancer include ultrasound, 
mammography, and thermography. 
Image processing today is enabled 
with artif icial intelligence (AI) and 
support vector machine accuracies 

can be checked and compared. Com-
puter-assisted methods such as these 
can aid in “reducing false positives.”İİ

Advancements in AI have contribut-
ed to the ways we diagnose and treat 
breast cancer as well as identify new 
algorithms to improve former software 
tasks to ensure precision and accuracy 
in test results. But before AI was inte-
grated into imaging for breast cancer 
it had humble beginnings at Stanford 
University when Professor John Mc-
Carthy coined the term AI in 1955. Mc-
Carthy envisioned an AI that with the 
proper study of learning, and every 
aspect of it, to include “features of in-
telligence” that we owls eventually be 
able to describe it to a machine and 
it “can be made to simulate it.”İİİ Since 
McCarthy AI has grown its own subsets 
known as machine learning and deep 
learning among others (such as con-
volutional neural networks, artif icial 
neural networks, and expert systems). 
Machine learning can be described as 
the subset of AI that has the capacity, 
or intelligence, to “imitate intelligent 
human behavior” in problem solving. 
The functions of a machine learning 
system can be descriptive, predictive 
or prescriptive such that machine 
learning is able to use data to explain 
a phenomenon, or to predict what will 
happen in the situation, or it can make 
recommendations as to what activity 
or action should be taken in light of 
the data. The three types of machine 
learning are called supervised learn-
ing, unsupervised learning and rein-
forcement learning (RL). The f irst can 
be trained to identify labelled data 
sets, while the second f inds its own 
patterns in unlabeled data. The f inal 
kind of machine learning is RL works 
on a trial-and-error system where it 
can notify about correct or incorrect 
decisions made in any one case. Deep 

3

Artif icial Intelligence Applications for Breast Cancer

learning varies f rom machine learning 
in that it utilizes neural networks with 
multitude layers to process data. This 
is particularly helpful when image rec-
ognition involves “individual features” 
such as those in faces, and other body 
parts. Deep learning is particularly 
useful in the medical f ield and in di-
agnostics.İV

2-Imaging and Artif icial Intelligence 
for Breast Cancer
AI is already being used for imaging 
purposes and has made great strides 
in the medical f ield. Conventional im-
aging machines such as MRIs (mag-
netic resonance imaging), ultrasound 
machines, and CTs (computed to-
mography) can use AI to give us en-
hanced-clearer, more accurate and 
precise images. For breast cancer, in 
particular, Sadoughi (2018) describes 
the various breast imaging methods: 
mammography, ultrasound and ther-
mography. He presents the problems 
related to imaging methods such as 
the “presence of noise in images” and 
the problem with radiologists who 
cannot see the images clearly enough 
due to this “noise.” With the advent 
of neural networks, a subset of AI, in 
the 1980s, imaging methods have im-
proved so that the diff iculty in the 
diagnosis of breast cancer has trans-
formed. AI gives image processing the 
required “pattern recognition” as well 
as accuracy in the detection of masses 
(both benign and malignant). He ar-
gues that the aim of image processing 
is to address the “inherent problems 
associated with an image, including 
poor contrast, noise, and lack of rec-
ognition with the eye” and that we 
should “use techniques for making 
proper images of the human body, 
which are reliable for use in the diag-
nosis and treatment processes.”V

Ultrasounds for Breast Cancer
Ultrasound machines are newly being 
enabled with AI. The f irst to be FDA 
approved was used to “capture im-
ages of acceptable diagnostic quali-
ty during adult echocardiography” in 
2020.Vİ Current research is underway, 
since 2019, on how AI can enhance ul-
trasound for analysis of the breast (as 
well as for the prostate, liver and heart).
Vİİ Huang et al. (2005), in their study of 
“600” ultrasound images f rom diverse 
ultrasonic machines, were particularly 
interested in the ways Computer-aid-
ed diagnostic (or CAD) worked to bet-
ter locate and identify both malignant 
and benign tumors in breasts. Yet, 
their studies prove that CAD can be 
effective for this purpose, but they do 
not speak of enhanced CAD systems 
(those enabled with AI) for their pur-
poses.Vİİİ CAD has undergone software 
development and can now work with 
AI technologies (in sectors such as ar-
chitecture), but its uses in medicine 
and for medical purposes is undeter-
mined. 
However, the problem with ultra-
sounds lies in the fact that they are 
not used for breast cancer detection, 
according to Johns Hopkins Medicine. 
The reason being that ultrasound 
(with or without AI?), cannot detect 
the signs of cancer early on, such as 
“tiny calcium deposits” or what are 
called microcalcif ications.İX Because 
ultrasound lacks the radiation that 
is present in mammography screen-
ing it can be used for the detection of 
larger masses and is also nor reliable 
for women who have larger breast 
density.X It is also important to note 
that because ultrasound is ultimately 
controlled by the human technician, 
it would be diff icult to implement AI 
into it though studies continue in this 
regard.Xİ
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Magnetic Resonance Imaging (MRI) 
and Artif icial Intelligence
Magnetic resonance imaging is a more 
expensive way to detect breast can-
cer, but it does offer better detection 
at earlier stages than mammograms.Xİİ 
Newer types of MRI, such as the “fast” 
kind are, however, better at detecting 
cancer in breasts, to include dense 
ones, at an earlier stage.Xİİİ Breast can-
cer is the number one killer of women 
worldwide and early detection of le-

sions and cancerous cells is signif icant 
to cure it. New types of imaging tech-
nologies are now increasingly depen-
dent on the use of AI for better and less 
invasive testing of women no matter 
the size of their breasts which leads to 
better diagnosis and treatment. 
An MRI machine consists of a “large, 
cylindrical (tube-shaped) machine 
that creates a strong magnetic f ield 
around the patient.” MRIs do not use 
radiation and are dependent on radio 

Table 1-Applications of AI in Breast MRI

AI, artif ical intelligence; MRI, magnetic resonance imaging; AUC, the area under the receiver 
operating characteristic curve; CNN, convolutional neural network; BI-RADS, Breast Imaging 
Reporting and Data System; ACC, accuracy; CAD, computer-aided detection; Spe, specif icity; 
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335 AUC=81.6% (60)

2 classify lesions radiomic analysis and CNN 1294 AUC=98% (62)

3 characterize and 
classify lesions

the combination of 
unsupervised dimensionality 
reduction and embedded 
space clustering followed by a 
supervised classifier

792 AUC=81% (63)

4 classify breast tumors QuantX 111 AUC=76% (67)

5 assess and diagnose 
contralateral BI-RADS 
4 lessions

MRI radiomics-based 
machine learning

178 AUC=77%
ACC=74.1%

(69)

6 assess tumor extent 
and multifocality

CADstream software (version 
5.2.8.591)

86 AUC=88.8%
Spe=92.1%

PPV=90.0%

(70)

7 early predict 
pathological 
complete response 
to neoadjuvant 
chemotherapy and 
survival outcomes

linear support vector 
machine, linear discriminant 
analysis, logistic regression, 
random forests, stochastic 
gradient descent, decision 
tree, adaptive boosting and 
extreme gradient boosting

38 AUC=86% (71)
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waves to work. “The magnetic f ield, 
along with radio waves, alters the hy-
drogen atoms’ natural alignment in 
the body. Computers are then used to 
form a two-dimensional (2D) image of 
a body structure or organ based on the 
activity of the hydrogen atoms.” MRIs 
can be used to detect breast cancer, 
however because the more conven-
tional MRIs are not enhanced with 
AI, they are not able to always locate 
small breast lesions like mammogra-
phy can. Breast cancer can be tracked 
with the MRI after a woman has been 
injected with a die to locate lesions 
through coloring of blood in the veins. 
MRIs are better used to detect cancer 
in younger women (less than 40) and 
for those who have breast implants. 
MRIs are not always able to determine 
types of breast cancer and this may re-
quire further testing through biopsies. 
Moreover, error and “false positives” 

can be the outcome for breast cancer 
patients who use MRIs. MRIs, however, 
are now more advanced and can give 
better, more accurate results with AI 
(Johns Hopkins Medicine2). 

Thermography for Breast Cancer: 
Artif icial Neural Networks 
Thermography is another form of 
imaging that can be used to detect 
breast cancer. It involves the use of 
temperature sensing as it “records 
temperature changes on the surface 
of the skin which is known as Digital 
Inf rared Thermal Imaging (DITI).” Ver-
sus mammography and MRI thermog-
raphy is a less invasive, “painless and 
cost-effective” form of imaging that 
offers a “high chance of recovery” for 
patients when detection is early. It is 
argued that no form of imaging is as 
predictable as biopsies, but today en-
abling technologies with AI and artif i-
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cial neural networks (ANNs) can offer 
the tools for increased predictability 
that can also enhance thermography 
imaging. ANNs are a machine learn-
ing technique that can “detect trends 
and extract complex patterns.” Many 
imaging machines are dependent on 
“classif ication algorithms’’ that aid in 
determining whether or not a patient 
needs further testing done. Aside 
f rom ANNs, machine learning algo-
rithms for imaging classif ication are 
“Naïve Bayes Classif ier Algorithm, K 
Means Clustering Algorithm, Support 
Vector Machine Algorithm, A priori Al-
gorithm, Linear Regression, Logistic 
Regression...Forests, Decision Trees 
and Nearest Neighbors.” Yet many of 
these algorithms cannot be utilized 
for imaging processes. Not all classif i-
ers are suitable for all image process-
ing techniques and all have their own 
advantages and disadvantages.XİV

3-Detection and Risk Prediction 
Breast cancer needs to be detected 
earlier in order to cure the disease. For 
many women around the world, the 
various types of imaging offered are 
either dependent on the detection of 
larger masses of cancerous cells or tu-
mors or they are problematic in terms 
of breast size and detection of abnor-
malities within the breast tissue it-
self. In this arena, artif icial intelligence 
holds much potential. Dr. Constance 
Lehman, Harvard University Medical 
School, f inds that current cancer risk 
models are inadequate and he, as head 
of Breast Imaging at Massachusetts 
General Hospital, wants to apply more 
AI to “improve prediction of future risk 
of breast cancer based on mammog-
raphy alone, including validation trials 
in multi-ethnic populations” and he 
wants this to be the future of breast 
cancer imaging applications so that 

patients can have a more “personal-
ized” and “precise” way to detect, diag-
nose and treat breast cancer.XVİ

4- Ethics of Artif icial Intelligence 
and Cancer
With the development of any ad-
vancement, ethics is always an issue 
that is debated. In areas of medicine, 
to be particular, breast cancer treat-
ment, screening and diagnosis bring 
along “risk calculation, prognostica-
tion and clinical decision-support, 
management planning, and precision 
medicine.” Artif icial intelligence (AI) 
systems have caused immense excite-
ment with their rapid development 
as the care for breast cancer great-
ly increases. With this, implementa-
tions also naturally seem to happen 
in rushed manners. The ethics aspect 
does not only require accuracy f rom AI 
systems because “accuracy alone can-
not justify clinical use.” These systems 
also have to be evaluated in regards 
to their legality and their position ac-
cording to social as well as ethical cri-
teria. With the review of multiple areas 
of implications, the values encoded in 
algorithms of the systems are evalu-
ated regarding their outcomes, any 
kinds of biases, consensuality, moral-
ity, and responsibility.

Stakeholders in Healthcare AI 
Health systems adopting AI should do 
so in rigorous trials with public deliber-
ation. We consider potential effects for 
patients, including on trust in health-
care, and provide some social science 
explanations for the apparent rush to 
implement AI solutions. We conclude 
by anticipating future directions for AI 
in breast cancer care. Stakeholders in 
healthcare AI should acknowledge that 
their enterprise is an ethical, legal and 
social challenge, not just a technical 
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challenge. Taking these challenges se-
riously will require broad engagement, 
imposition of conditions on implemen-
tation, and pre-emptive systems of 
oversight to ensure that development 
does not run ahead of evaluation and 
deliberation. Once artif icial intelligence 
becomes institutionalized, it may be 
diff icult to reverse: a proactive role for 
government, regulators and profession-
al groups will help ensure introduction 
in robust research contexts, and the de-
velopment of a sound evidence base 
regarding real-world effectiveness. De-
tailed public discussion is required to 
consider what kind of AI is acceptable 
rather than simply accepting what is 
offered, thus optimizing outcomes for 
health systems, professionals, society, 
and those receiving care.XVİİ

Conclusion
Breast cancer is not a novel disease it 
is one that has plagued women all over 
the world decades if not longer. Med-
ical technologies, physicians and re-
searchers as well as the larger public 
have been moving to end the deaths 
of women due to this detectable and 
treatable illness. The problem, how-
ever, with all the funds the world has 
put in for research of breast cancer 
has, though saved many women’s’ lives 
worldwide, has not improved as much 
as we would like nor at the pace of the 
disease itself. As diseases evolve so 
must our technologies and the ways 
we detect, diagnose and treat diseas-
es like breast cancer. Artif icial intelli-
gence, favorable for its data imaging 
and predictability of data which is fast, 
accurate and eff icient, offers clinicians 
a way to detect and learn more about 
cancerous tumors and lesions not only 
in the breast but commonly for the 
other types of cancer that can be de-
tected better with AI such as prostate, 

brain and lung cancer. Using algorithm 
enhanced AI machine applications, 
MRIs, mammograms and ultrasounds 
are currently being trained with AI to 
improve data outcomes for the health 
of women everywhere. It is hoped 
that the ethical concerns that revolve 
around the use of AI for the detection, 
diagnosis and treatment of breast can-
cer do not outweigh the future benef its 
and issues of privacy and security will 
be addressed and resolved by govern-
ments and medical institutions so that 
AI can improve health and well-being 
without being limited and so that re-
searchers can offer less invasive, pain-
ful and more precise and accurate in-
formation for patient health.
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M a c h i n e  L e a r n i n g 
a n d  B i o i n f o r m a t i c s

B a t u  E n g i n

Introduction
Biology, the study of life, is one of the 
most complex and intriguing sciences 
known to humankind. For our knowl-
edge of Biology to expand, scien-
tists have to analyze and study large 
amounts of data for the smallest ob-
jects such as DNA strands, proteins, 
and genes. This massive amount of 
data is not easy to analyse and inter-

pret without the use of computers. 
As a result, an interdisciplinary f ield 
called Bioinformatics, or the combi-
nation of Data Science and Biology, is 
benef icial. Obstacles in analysis and 
interpretation can be eff iciently tack-
led by applications of machine learn-
ing. Ever since the term “machine 
learning” (ML) was coined, it has been 
a hot topic in many industries such as 

Batu Engin

2

in the areas of industrial production, 
f inance or healthcare. The main rea-
sons for the rise in ML’s applications 
in Bioinformatics is because scientists 
are aiming to increase their eff icien-
cy and quality when analyzing and in-
terpreting biological data in research 
for gene f inding, sequence alignment, 
protein structure prediction, drug dis-
covery and design, and simulations. 
Thus raising the question as to what 
extent can Artif icial Intelligence (AI)  
and ML, specif ically, benef it Bioin-
formatics? This paper will specif ical-
ly evaluate the benef its of ML to the 
aforementioned applications within 
Bioinformatics.

Machine Learning
Machine learning is a subf ield of Artif i-
cial Intelligence and Computer Science 

(See Figure-1) in which data and differ-
ent algorithms that mostly rely on sta-
tistics are used in order to f ind patterns 
in data, achieve human-like learning 
capabilities and ultimately attempt to 
increase their accuracy through feed-
back loop systems (IBM, n.d.). 
There are two predominantly used 
types of machine learning: supervised 
learning and unsupervised learning. 
Supervised learning can be thought of 
as an interventionist approach by hu-
mans in which models receive already 
labelled data to predict the outcome 
of a certain situation. The most well-
known and basic example being: a 
model receives a dataset full of house 
features such as size, amount of bed-
rooms and location; and this data is 
labelled with the price of the houses. 
The ultimate goal for this model would 

Figure 1. 
Note. From What is the difference between AI, machine learning and deep learning? 
by M. Dhande, 2020 (https://www.geospatialworld.net/blogs/difference-between-
ai%EF%BB%BF-machine-learning-and-deep-learning/). Copyright by  GEOSPATIAL 
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tists have to analyze and study large 
amounts of data for the smallest ob-
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be to predict the price of a house giv-
en their features. On the other hand, 
unsupervised learning is the opposite 
of supervised learning in which mod-
els are tasked with f inding the patterns 
between different data and labels 
themselves. One example of this heavi-
ly relates to bioinformatics: given a col-
lection of millions of genes, the mod-
el would be tasked with categorizing 
these genes into what their functions 
and locations would be (Ng, n.d.). 
Foote’s (2019) history of Artif icial Intel-
ligence reveals that the f irst machine 
learning application was an AI for play-
ing checkers, implemented by Arthur 
Samuel, who was working at IBM, in 
the 1950s. The object of this machine 
learning algorithm was to f ind the best 
possible outcome and play according-
ly, known as the process of alpha-be-
ta pruning. Samuel himself coined the 
term “machine learning” in 1952. Fur-
thermore, the f irst unsupervised al-
gorithm called “The Nearest Neighbor 
Algorithm” was conceived in 1967 as 
an attempt to solve travel route prob-
lems for people such as salespeople. It 
was not until the early 1980s that ML 
was separated into its own distinct 
f ield due to the differences between 
its goals and those of AI. Finally, Foote 
also explains that ML shifted its focus 
to providing services via its statistical 
methods, such as regression, and fo-
cused on conducting research on Neu-
ral Networks which is still one of the 
most recognized machine learning 
methods today. 
Throughout its history, machine learn-
ing has achieved and supported many 
discoveries f rom recognizing imag-
es of cats on YouTube to supporting 
self-driving cars; yet there is so much 
more to discover. Machine learning 
applications have countless benef its 
to multiple industries. Some of these 

include: identif ication of trends and 
patterns, mostly simple to implement 
and use, little to none human inter-
vention needed as models can learn 
themselves to boost their accuracy and 
performance. For example, one of the 
applications of ML is in f inance; ML can 
be used to predict which stock may be 
worth buying, recognize anomalies or 
detect people eligible for loans. Anoth-
er example is in transportation, one of 
the most recognized applications being 
self-driving cars which can use object 
classif ication algorithms to identify ob-
jects such as roads, cars, pedestrians in 
order to guide them through the route 
and reach their designated destination 
(Mindy Support, n.d.).

Bioinformatics
According to Christopher P. Austin, 
M.D. f rom the National Human Ge-
nome Research Institute, “Bioinfor-
matics is a f ield of computational sci-
ence that has to do with the analysis 
of sequences of biological molecules.” 
(National Human Genome Research 
Institute, n.d.)
Gauthier’s (2018) “A brief history of 
bioinformatics” informs us that bioin-
formatics is almost as old as machine 
learning even though some may think 
of it as a recently established f ield. 
Margaret Dayhoff who was originally a 
physical chemist “who pioneered the 
application of computational meth-
ods to the f ield of biochemistry” is re-
garded as the “f irst bioinformatician”. 
During the years 1958 to 1962, she and 
a physicist, Robert S. Ledley,  imple-
mented a computer program called 
COMPROTEIN for the IBM 7090 which 
can be seen in Figure-2.
This program, according to Gauthier, 
was used to “determine protein pri-
mary structure using Edman peptide 
sequencing data”. Furthermore, ac-
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cording to Gauthier, two scientists, 
Emile Zuckerkandl and Linus Pauling, 
focused on investigating biomolecular 
sequences as ‘carriers of information’ 
whereas most research focused on the 
mechanistic modeling of enzymes. 
64 codons of the genetic code were 
deciphered by 1968, paving a way for 
sequencing DNA. The f irst method of 
DNA sequencing was the “Maxam-Gil-
bert sequencing method” developed 
in 1976. In 1978, the f irst “probabi-
listic model of amino acid substitu-
tions” was developed by Dayhoff and 
two other scientists. Finally in the 
1980s-1990s, computer science and 
bioinformatics started to come closer 

together amid the popularization of 
commercial computers. With more ac-
cess to computers by consumers, the 
rate of development for software for 
bioinformatics and biology increased 
substantially.  
The benef it of data science could be 
seen evident when the Human Ge-
nome Project (HGP) was initiated by 
the National Institutes of Health (NIH). 
HGP was “the international research 
effort to determine the DNA sequence 
of the entire human genome” (Nation-
al Human Genome Research Institute, 
n.d.). Whilst the sequencing of the hu-
man genome would be much faster 
and cheaper nowadays, at that time 

Figure 2. 
Note. From IBM 7090 Data Processing System,, n.d. (https://www.computerhistory.org/
collections/catalog/102646612). Copyright 2021 Computer History Museum.
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it took a “rough minimum of about 
40000 runs” in order to achieve only 
the f irst step of processing the data 
(Gauthier). Therefore Perl (a high-level 
programming language) based soft-
ware was created to address the mas-
sive chunk of data. In the past, many 
scientists such as Dayhoff made major 
strides towards expanding the f ield of 
bioinformatics which was ultimately 
sped up by the introduction of com-
puters entering the consumer market, 
new statistical models and initiatives 
such as the HGP.  
In the present, however, as Janice 
Glasgow, Igor Jurisica, and Burkhard 
Rost (2004) argue, bioinformatics has 
become a “truly interdisciplinary f ield” 
meaning that it is created f rom many 
other branches of science. Due to this 
feature of the f ield, a lot of different 
names are used for it such as “theo-
retical biology, biocomputing or  com-
putational biology.” Whilst this might 
be confusing, I believe that it is a tes-
tament to the fact that when two or 
more branches of knowledge are com-
bined, the outcome will be more pow-
erful and eff icient. 

How does ML benefit 
Bioinformatics?
We have gone through the history of 
how computer science and machine 
learning was applied by bioinformat-
ics but through which techniques and 
applications does it specif ically benef it 
bioinformatics? First of all,  the word 
“technique” will be used to refer to dif-
ferent machine learning algorithms 
whereas the word “application” will be 
referring to the way in which machine 
learning techniques are applied to dif-
ferent bioinformatics methods.
There are many machine learning al-
gorithms used within bioinformat-
ics however the most common 3 are: 

“K-Nearest Neighbours”, “Decision 
Trees” and “Regression”. K-Nearest 
Neighbours (KNN) is a supervised ma-
chine learning algorithm that can be 
used to solve classif ication and re-
gression problems. KNN works by the 
principle that “similar things exist in 
close proximity”. The “K” in the KNN 
refers to the parameter which decides 
how many neighbours should be con-
sidered when deciding the output of 
a given input. For example, as seen in 
Figure 3, we have two classes, A and B. 
A “K” value of 3 would include 3 neigh-
bours, 1 of class A and 2 of class B; on 
the other hand, A “K” value of 6 would 
include 6 neighbours, 4 of class A and 
2 of class B. Based on this information, 
the k-nearest neighbours algorithm 
would evaluate the class in which the 
red star would f it (Harrison, 2019).
Furthermore another machine learn-
ing algorithm utilized would be deci-
sion trees. Decision trees are also su-
pervised algorithms and are split into 
two types: classif ication trees and re-
gression trees. In classif ication trees, 
given a certain input, the output would 
be binary. For example, classifying if a 
person is healthy or unhealthy. How-
ever regression trees output a “contin-
uous variable”, e.g an integer value or 
a percentage. For instance, regression 
trees could be used to determine the 
age of a student based on their habits 
such as if they exercise or eat properly.  
Whilst it could be easily implement-
ed by a high level programming lan-
guage such as Python with minimal 
lines of code, the inner workings of de-
cision trees are complex. However, es-
sentially as George Seif puts it, the ob-
jective of the decision tree algorithm 
is “to build a tree with a set of hierar-
chical decisions which eventually give 
us a f inal result, i.e our classif ication 
or regression prediction” (George Seif, 
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2018). Here are the simplif ied steps of 
training a decision tree model as writ-
ten in the article:

“1- Begin with your training dataset, 
which should have some feature vari-
ables and classif ication or regression 
output. 2- Determine the “best fea-
ture” in the dataset to split the data on; 
more on how we def ine “best feature” 
later. 3- Split the data into subsets that 
contain the possible values for this 
best feature. This splitting basically de-
f ines a node on the tree i.e each node 
is a splitting point based on a certain 
feature f rom our data. 4- Recursively 
generate new tree nodes by using the 
subset of data created f rom step 3 We 
keep splitting until we reach a point 
where we have optimised, by some 
measure, maximum accuracy while mi-
nimising the number of splits / nodes” 
(George Seif, 2018). 

Lastly, regression is the most widely 
used machine learning algorithm not 
only in bioinformatics but also in f i-
nance, economics, sciences and other 
f ields. For example the Capital Asset 
Pricing Model (CAPM) is a linear regres-
sion model that predicts the return of 
a portfolio with respect to its risk (Cor-
porate Finance Institute, 2020). For 
the sake of simplicity, I will be talking 
primarily throughout this paper about 
the simple linear regression model that 
can be represented by:

Y = a_0 + a_1x

This type of regression analyses the lin-
ear relationship between the indepen-
dent value (x) and the dependent value 
(Y). The “a_0” value refers to the initial 
value of Y or rather value of Y when x 

Figure 3. 
Note. From Introducción al Machine Learning #9 - K Vecinos más cercanos 
(Clasif icación y Regresión), by L. Salcedo, 2020 (https://pythondiario.com/2018/01/
introduccion-al-machine-learning-9-k.html).
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is equal to 0. The “a_1” value refers to 
the gradient of the function. Under-
standing the formula is quite simple, 
however the complexities of linear re-
gression lie in the cost function. As 
Gandhi (2018) states in the article, “The 
cost function helps us to f igure out 
the best possible values for a_0 and 
a_1 which would provide the best f it 
line for the data points.” In data such 
as the one demonstrated in the graph 
(Figure-4), what the cost function does 
is minimize the distance between the 
line and the points so we can predict 
more accurate values. Last concept to 
better understand linear regression is 
the gradient descent, which explains 
how exactly the a_o and a_1 values are 
determined. Simply gradient descent 
works by picking initial values of a_0 
and a_1(these values can be both high 
or low). In an iterative process: values 
are changed, cost function is checked 
and at the end, values of a_0 and a_1 

that have the lowest cost function are 
chosen for linear regression. 
These machine learning techniques 
have been utilized in many bioinfor-
matic methods such as drug discovery, 
gene f inding, sequence alignment, 
drug design, protein structure predic-
tion, protein structure alignment, evo-
lution modelling and cell division mod-
elling. 

Gene Finding and Prediction
According to the NIH (n.d), gene f ind-
ing is the process of “identifying genes 
within a long DNA sequence”. Before 
the f ield of bioinformatics was creat-
ed, gene f inding was done by compli-
cated processes such as studying its 
functions through living organisms or 
analysing it through test tubes. Indu-
bitably, it could be sensed that this is 
not the most eff icient way of analysing 
and identifying genes. Gene prediction 
is especially important as it allows for 

Figure 4. 
Note. From Introduction to Machine Learning Algorithms: Linear Regression by R. 
Gandhi, 2018, (https://www.dataversity.net/a-brief-history-of-machine-learning/). 
Copyright by 2011 – 2021 Dataversity Digital LLC.
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“understanding the minimal require-
ments of an organism, identifying dis-
ease genes, and f inding new drug tar-
gets.” (Xia, 2018)
To begin with, gene prediction has two 
types: ab initio and evidence-based. Ab 
initio is the process in which a comput-
er program is fed data and instructions 
for f inding  genes. The computer tries 
to locate common sequences at the 
start and end of genes. Evidence-based 
gene f inding is as follows in the article:

“It involves gathering various pieces 
of genetic information f rom the tran-
script sequence and known protein 
sequences of the genome. With these 
pieces of evidence it is then possible 
to get an idea of the original DNA se-
quence by working backwards through 
transcription and translation.” (How do 
you identify the genes in a genome? 
2021)

The information f rom both techniques 
are then “combined and lined up with 
the sequence genome”.
In Elizabeth H.Mahood’s (2020) pa-
per, the applications and benef its of 
machine learning for gene f inding 
is demonstrated. She states that for 
gene function prediction, supervised 
algorithms are used because, in order 
to locate the function of a gene, data 
must be fed for the algorithm to f ind 
a pattern . For instance, a software 
used for the identif ication of “genic 
elements” utilizes Support Vector Ma-
chine, which is a supervised machine 
learning algorithm”. Furthermore, in 
one study attempting to “predict met-
abolic pathways in an organism from 
its genome-wide gene complement”, 
decision trees were used. 
However an article by Zhang (2020) 
reveals that applications of machine 
learning may have a few limitations. 
Instead, he proposes a deep learn-

ing solution, explaining that machine 
learning’s “prediction powers either 
alone or in integration mode (in ma-
chine learning methods) are still limit-
ed compared with those automatically 
learned by some deep learning f rame-
works”.

Sequencing
Andrew D. Prjibelski (2019) reveals 
through his article that, “Sequence 
alignment is the process of compar-
ing and detecting similarities between 
biological sequences” It is about f ind-
ing evolutionary relationships through 
similarity functions when DNA se-
quences are aligned.
When comparing two strings, similarity 
scoring algorithms such as Hamming 
distance or Cosine difference may be 
used, however the Hamming distance 
is the most f requently used one. Ma-
cleod (1993) provides us the def inition, 
“The Hamming distance between two 
codewords is simply the number of bit 
positions in which they differ.”
Machine learning is benef icial in se-
quencing as past methods of sequence 
alignment such as similarity scoring al-
gorithms do not provide “suff iciently 
accurate structure models” as Shuichi-
ro Makigaki (2019) notes. As a high ac-
curacy of sequence alignment is signif-
icant for modeling, another method is 
required. In his article, Makigaki propos-
es the training of a KNN model to boost 
the accuracy of sequence alignment. 
He uses the process of “re-alignment” 
which is basically, receiving an input of 
two sequences and outputting two se-
quences that are more suitable for “ho-
mology modeling”. The KNN is trained 
on the SCOP database which stores 
all classif ication for protein structure. 
The objective of the machine learning 
model is to predict the match score for 
the two sequences. This match score is 
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Note. From Introduction to Machine Learning Algorithms: Linear Regression by R. 
Gandhi, 2018, (https://www.dataversity.net/a-brief-history-of-machine-learning/). 
Copyright by 2011 – 2021 Dataversity Digital LLC.
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then used for re-aligning the sequenc-
es creating a suitable input for “tem-
plate-based modeling”. The illustrated 
steps can be seen in Figure 4 below.
The application of machine learn-
ing was particularly successful as this 
new developed method outperformed 
the traditional distance functions be-
ing used before. On the other hand, 
there is a trade-off between accuracy 
and time. KNN is a relatively slow al-
gorithm. Training a KNN model on a 
dataset such as the SCOP is time con-
suming. Therefore Makigaki was forced 
to reduce the amount of training data. 
Whilst machine learning can most cer-
tainly increase performance, it is also 
quite slow.

Drug Design and Discovery
During the Covid-19 crisis, we saw f irst-
hand the need for rapid drug devel-
opment. Bioinformatics has, for long, 

contributed to drug design and dis-
covery for many diseases. As Xuhua 
Xia (2017) has stated, “Bioinformatic 
analysis can not only accelerate drug 
target identif ication and drug candi-
date screening and ref inement, but 
also facilitate characterization of side 
effects and predict drug resistance.” 
Bioinformatics aids in all the steps for 
drug discovery. For example, connect-
ing disease symptoms to genetic and 
environmental factors, identifying the 
target of the drug, which could either 
be eliminating the harmful cells or re-
storing the cells’ functions, or predict-
ing the effects that a certain drug can 
have on the test candidates.
The contributions of machine learning 
to drug discovery spans, “predicting 
target structure”, “identifying and op-
timizing hits”, “exploring the biological 
activity of new ligands” and “design-
ing models that predict the pharma-
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cokinetic and toxicological properties 
of the drug candidates” (Ratanghayra, 
2021). One recent case of the predict-
ing function is the DeepCE project en-
gineered by researchers at the Ohio 
State University. It is a neural network 
that is trained with L1000 which “is a 
National Institutes of Health-funded 
data repository” and DrugBank which 
contains a heavy load of chemical in-
formation for more than 10000 drugs. 
Evidently, processing this data with 
high accuracy requires machine learn-
ing. DeepCE explains how gene ex-
pression correlates with drug response 
which particularly helps with identify-
ing drug repurposing candidates. This 
is especially useful when a drug is be-
ing developed for a new and unknown 
disease such as Covid-19. Another use 
of machine learning is f inding pat-
terns in signals f rom “image-based 
prof iles”. Ratanghayra explains that 
image-based prof iling is the process 
of extracting and analysing biological 
images. A group of researchers and bi-
ologists lead by Anne Carpenter is also 
using deep learning to identify pat-
terns in image-based prof iles which 
can provide a better understanding of 
biological information and hence ac-
celerate drug discovery.
The drawbacks of applying machine 
learning to drug development is that 
it cannot completely replace a human 
yet. As the editorial team (2021) argues, 
machine learning predictions can be 
harmed by the algorithm bias and the 
cost of the computer power required 
for deep learning and fast training of 
millions of data. Due to the fact that 
an algorithm cannot be fully trusted in 
important subjects such as developing 
drugs that could potentially save the 
lives of millions of people, scientists 
still need to verify the validity of predic-
tions which can slow down the process.

The Future of Machine Learning for 
Bioinformatics
Throughout the article, there is a re-
curring theme of AI having its advan-
tages but also disadvantages mostly 
due to its limitations of time. Whilst 
linear machine learning algorithms 
can be trained on a relatively small 
dataset with commercial computers, 
in the f ield of Bioinformatics, data is 
very large. As years pass, we are gath-
ering more and more data and the 
processing of such data is complicat-
ed. This is why Quantum computing 
is one of the most anticipated and 
promising technologies.
As IBM (n.d) puts it, “Quantum com-
puting harnesses the phenomena of 
quantum mechanics to deliver a huge 
leap forward in computation to solve 
certain problems.” Quantum comput-
ers are built upon the principles of 
quantum mechanics. Instead of bits in 
normal computers, quantum comput-
ers use “qubits” which are the basic 
unit of information stored in the quan-
tum state. The reason why quantum 
computers can analyze data is due to 
the vast 3 dimensional spaces it can 
create via the principle of superposi-
tion which is the ability of particles to 
be at multiple states simultaneous-
ly. Furthermore quantum algorithms 
can “exploit quantum entanglement” 
which allows randomly behaving qu-
bits to be “perfectly correlated with 
each other”. The ability of quantum 
computers to make mathematical 
calculations eff iciently at the small-
est possible levels allows for machine 
learning algorithms to perform faster. 
I strongly believe that quantum com-
puting will positively impact the f ield 
of bioinformatics once it is fully inte-
grated into bioinformatic methods, 
most importantly in drug discovery.
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can be trained on a relatively small 
dataset with commercial computers, 
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very large. As years pass, we are gath-
ering more and more data and the 
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As IBM (n.d) puts it, “Quantum com-
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quantum mechanics to deliver a huge 
leap forward in computation to solve 
certain problems.” Quantum comput-
ers are built upon the principles of 
quantum mechanics. Instead of bits in 
normal computers, quantum comput-
ers use “qubits” which are the basic 
unit of information stored in the quan-
tum state. The reason why quantum 
computers can analyze data is due to 
the vast 3 dimensional spaces it can 
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tion which is the ability of particles to 
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Conclusion
The increase in application in machine 
learning has long impacted the inter-
disciplinary f ield of bioinformatics. 
Throughout my paper, it is clear that 
these applications had a positive im-
pact due to increased eff iciency levels 
when it comes to processing the data 
and producing outputs. With the use 
of both machine learning and deep 
learning, methods of bioinformatics 
such as sequencing, gene f inding and 
drug discovery have been accelerated. 
Whilst there are time constraints to 
the use of these statistical models, in 
the future, as quantum computing is 
more spread, this certainly will not be 
an issue. I believe that if we continue 
to develop and utilize machine learn-
ing solutions for bioinformatic appli-
cations, the world can further benef it 
f rom the biological and research ad-
vances.
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C o m p u t a t i o n a l  B i o l o g y : 
I n t r o d u c t i o n ,  M e t h o d s , 
a n d  a  M e a n s  o f  T r e a t i n g 
C a n c e r  P a t i e n t s

What is Computational 
Biology?
It is, in the words of com-

putational biologist Florian Markovetz, 
actually a manifestation of all biology, 
past and present. How so? He claims 
that, because computational biology 
makes use of technology to, in essence, 
classify and sort various things into 
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He also makes the excellent point that 
much of biology in the modern sense, 
such as treating cancer for example, 
depends upon thorough quantitative, 
not simply qualitative, use of large-
scale (and usually global or at least re-
gional) data. For example, what is the 
occurrence rate of lung cancer, for ex-
ample? How often is it seen in which 
demograph according to area of res-
idence, which of course would be ac-
counted for in terms of exposure to 
pollutants such as smog or otherwise, 
the cleansing effect of sunlight (if any 
exists) as well as a varied plentitude of 
other factors such as general diet, ex-
ercise and standard of general health 
for the area. For example, the graph 
below shows us preventable incidence 
of cancers within the UK, to give one 
instance of how large data greatly 
benef its treatment plans and other 
solutions within the modern f rame 

of biology studies that encompasses 
medical research. 
In benef iting general knowledge of 
how exactly computational biology 
aids scientists in various forms of cat-
egorization and research, looking at it 
f rom an evolutionary perspective, sim-
ilar to how Linnaeus divided animals 
and plants into groups and families 
for ease of identif ication, so shall ex-
amining the evolutionary perspective 
of cancer via computational biology 
help grasp how the large data is used 
to achieve smaller-scale but signif icant 
conclusions that apply more widely to 
the f ield(s) in question. This will be fol-
lowed by a practical summary of the 
modelling methods and their applica-
tions as used in the real world by re-
searchers, as well as recent advances 
made in the f ield via newer uses of bi-
ological computation in an experimen-
tal environment. 
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Computational Biology: Cancer from 
an Evolutionary Perspective
Firstly, what exactly is cancer, and why 
does it spread through the body as it 
does? Simply said, cancerous tumours 
grow in size and spread through the 
body due to essentially rapid and un-
controlled cell multiplication. Progres-
sion. This progression of cells emerges 
because “of the accumulation of selec-
tively advantageous mutations, and 
expanding clones give rise to new cell 
subpopulations with increasingly high-
er somatic f itness.” This somatic evolu-
tion of cancer cells was established in 
the 1970s Nowell and others, and today, 
computation biology allows research-
ers to use large-scale molecular prof il-
ing data to create principles and hall-
marks of tumor evolution, and to also 
understand how it manifests across 
various types of cancer as a shared trait. 
Firstly, although cancer is usually found 
at only one stage of the life of a “host”, 
there is evidence that “although mu-
tations are thought to primarily arise 
during the development of cancerous 
tissue, there is a growing body of evi-
dence, including theoretical, histolog-
ical, and genetic approaches, support-
ing the idea that somatic mutations 
occur throughout the entire lifetime of 
the host organism. Such mutations can 
be detected at low levels in circulating 
cells, as well as directly f rom tissue. In 
eyelid epidermal cells, for example, it 
has recently been shown that perfect-
ly functional cells harbor a plethora of 
mutations that are also found in known 
cancer genes.” Even so, a single snap-
shot of a genome can only say so much 
of the actual cancer risk in the patient. 

Models and Methods in 
Computational Biology 
Modern sequencing now allows sam-
ples f rom several parts of the tumour, 

and can also include a time-lapse for 
different samples to display realistic 
aftereffects of any treatments under-
taken. Although direct sequencing of 
samples is now routinely carried out, 
mutation signals f rom small subsets of 
cells are diff icult to detect. Regarding 
the models used to practically sort tu-
mour development in a section of the 
body, “there exist four types of phyloge-
netic methods used in in biogeography 
studies (usually related to populations 
found within a habitat, but equally ap-
plicable here): diffusion models, island 
models, hierarchical vicariance, and re-
ticulate. Excepting reticulate which ei-
ther a species or individuals of a species 
can f reely move around. Most closely 
resembling a tumour in that the cells 
move and spread just as wildlife does, 
it is of interest to note how relatable 
methods are in computational biolo-
gy via use of more traditional forms of 
data sampling, although for tumours 
we may say the “habitat” is prone to 
bend and distort size in unpredictable 
ways, even jumping randomly to new 
points far away, making the process 
somewhat more complex than a sim-
ple biogeographic map. 
In order to describe the population dy-
namics of evolving tumors, different 
models exist, but are differing in their 
specif ic usefulness: Population genet-
ics models, via use of the Wright–Fish-
er or the Moran process, can be used 
to model the fate of individual cells in 
a population. However, such a process 
is usually not exceedingly useful, as tu-
mours tend to evolve along the lines 
of a cluster or clusters of separate cell 
divisions, rather than remain as one 
homogenous mass, especially if and 
when they tend to develop resistance 
to efforts to treat them by altering their 
mutated sequences of genetic mate-
rial. More generally used are instead 
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branching processes that consider the 
unpredictable and responsive fluctu-
ations in the growth and composition 
of the population of mutated cancer 
cells. These deterministic approxima-
tions can often be solved analytical-
ly under simplifying assumptions, al-
lowing for factoring in of key points of 
readily quantif iable interest, including 
the probability of and time to f ixation 
of a mutant and the size and age of 
the tumor cell population. By contrast, 
intricate models tend to quickly col-
lapse into unreliability due to a lack 
of f igures on currently undetermin-
able variables such as such as popula-
tion structure or cellular interactions 
(whether among the cancerous cells or 
within the healthy vicinity next to the 
tumour(s)).

Mathematical modeling of tumor cell 
population dynamics may one day 
lead to models and software tools 
that are potentially predictive of dis-
ease progression and treatment out-
come. However, the majority of cur-
rent large-scale sequencing that has 
taken place is of limited depth and 
geographical scope, and mathemati-
cal models based on such information 
will therefore be most likely rather 
approximate, not deemed as medi-
cally very useful. To construct realistic 
models of the evolutionary processes 
taking place, is the need for need for 
realistic outcomes of the occurring 
process sequence alongside high-res-
olution data. One possible eventual 
solution may become ecological ‘hab-
itat’ models of the entire tumor micro-

Figure 1. 
Each tumor is regarded as an independent realization of the same evolutionary process
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environment, allowing a glimpse into 
the real time ‘cage’ of the cells as they 
live, breed and evolve. Since tumours 
evolve as individual specimens in each 
patient, extremely and eerily similar to 
how each animal or person has its own 
temperament and individuality, it be-
comes even more important that the 
aforementioned case of being able to 
observe the tumour in its native envi-
ronment in real-time become a reali-
ty. Current models attempt to address 
this problem via guessing of common 
features found in each distinct type of 
tumour of similar ‘species’ to try to de-
termine general behaviour that will be 
displayed, as seen in the chart below.

Models of Computational Biology: 
Advantages and Areas for 
Improvement
Next we will examine the specif ic 
modelling used in the computational 
environment, and analyze the bene-
f its and issues of each such model as 
they relate to real-world treatment 
and progress in keeping track of inci-
dence of cancer. To be truly useful to a 
biologist or physician, computational 
modeling should, according to Materi 
et al., such technology should, at min-
imum possess the features of being 
able to: 1) produce useful predictions 
or extrapolations that match exper-
imental results; 2) permit data to be 
generated that is beyond present-day 
experimental capabilities; 3) allow ex-
periments to be performed in silico 
to save time or cost; 4) yield non-in-
tuitive insights into how a system or 
process works; 5) identify missing 
components, processes or functions 
in a system; 6) allow complex process-
es to be better understood or visual-
ized and 7) facilitate the consolidation 
of quantitative data about a given 
system or process. Current process-

es are somewhat partially successful 
at points 1) and 2), and successful at 
points 3), 6) and 7), but wholly unable 
to help with the most crucial steps 
in a disease such as cancer: yielding 
non-intuitive but needed insights into 
how seemingly random cell divisions 
occur due to what triggers (number 
4), and identif ication of unknown ele-
ments that, oftentimes, solving simply 
one unlocks a whole new subsection 
of research possibilities (number 6); 
a notable example of this being the 
inf initely replicating cells of Henriet-
ta Lacks. The cells defy normal logic, 
but provided a global breakthrough 
in all existing cancer and mutagenic 
cell research after that point (and still 
continue to do so around the world, 
even today). Continuing onwards to 
our models of applicable computation 
options, we are presented with 4 mod-
els commonly used among biologists: 
these are ordinary differential equa-
tions (ODEs), cellular automata (DCA) 
and agent-based models (ABMs). We 
will cover in summary each meth-
od and its existing gaps in supplying 
knowledge (we have left out Petri 
nets because they are not generally 
used in tandem as as parts of hybrid 
models), followed by a brief mention 
of hybrid methods that combine one 
or more of the three main types list-
ed here. Before delving into models, a 
summary of the various layers of inter-
action that must be scanned for have 
been provided, alongside a caption 
identifying the respective strong suit 
of each model-to-section match. Also, 
we include the cautionary information 
that, “Building models of complex bi-
ological processes is an iterative pro-
cess that requires considerable atten-
tion to detail. Quantitatively accurate 
modeling requires explicit values for 
many variables including molecular 
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Figure 2. 
Figure 1 Issues of scale in modeling cancer. From whole organism to tumor tissue to 
individual cells to the molecules of replication and metabolism, modeling tumors spans 
about nine orders of spatio-temporal magnitude. Shown above are some of the modeling 
issues which need to be addressed at each level of simulation. Each text box includes the 
relevant spatio-temporal scale and modeling issues encountered at that level. Appropriate 
modeling approaches to address each issue are shown in brackets. Building hierarchical 
systems of inter-related models is still a primary challenge to modern researchers. ODE 
– Ordinary differential equation system, PDE – Partial differential equation system, DCA – 
Dynamic cellular automaton, PN – Petri net system, ABM – Agent based model.

Whole body
Scale = meters / days
Drug availability (Pharmacokinetics, ODE)
Nutrient/oxygen concentration (ODE)
Metastases (CDA, ABM)

Tumor tissue
Scale = centimeters / hours
Tissue heterogeneity (DCA, ABM)
Vascularization/angiogenesis (DCA, ABM)
Tumor morphology (PDE)
Matrix adhesion (DCA, ABM)
Nutrient/oxygen concentration (PDE)

Intracellular
Scale = nanometer / second or less
Reaction kinetics (ODE)
Compartmentalization/Molecular 
crowding (DCA)
Signal transduction (PN, DCA, ABM)
DNA replication (ABM, DCA)
Mutagenesis (ABM, DCA)

Cell
Scale = micrometers / minutes
Autocrine/Paracrine signals (PDE)
Cell division (DCA, ABM)
Apoptosis/necrosis (ABM, DCA)
Nutrient/oxygen concentration (PDE)

7

Computational Biology: Introduction, Methods, and a Means of Treating Cancer Patients

concentrations, cellular distribution 
of molecules, reactions rates, diffu-
sion rates, transport rates and degra-
dation rates. While many of these can 
be estimated f rom the literature or 
various online databases, a number 
of parameters often remain unknown 
at the start of any simulation. As a 
result, many modeling processes re-
quire that one provide estimates for 
key parameters. Usually “best guess” 
f irst order estimates can be used and 
then f ine-tuned using a well-under-
stood instance of the model as a com-
parison. Parameters are iteratively 
adjusted on subsequent simulations 
until the model accurately reflects the 
known test case.” “...you will never f ind 
any biomarker that works in every sin-
gle trial” says Professor Shirley Liu, in 
a talk given for thw women of Harvard 
University.

Ordinary Differential Equations 
(ODEs)
Biological systems are essentially mul-
ticomponent chemical reactors, thus 
displayable as chemistry equations. 
This fact permits mathematical analy-
sis: Many standard biochemistry texts 
provide thorough derivations of ordi-
nary differential equations (ODEs) for 
both simple and complex reactions. In 
fact, ODE based modeling is the most 
common simulation approach in com-
putational systems biology, reflecting 
both its rigor and adaptability. How-
ever, most complex ODEs do not have 
exact solutions and must be solved nu-
merically instead. Among the problems 
these lead to, we may briefly mention 
three: 

ODE Issues
Reaction kinetics equations, upon 
which these mathematical models are 
formulated, assume steady-states in 

well-mixed solutions with abundant re-
actants and few enzymes. On the con-
trary, even simple bacteria are crowded 
with macromolecules, having 300 to 
400 g/l of macromolecules occupying 
20 to 30 percent of cytoplasmic space, 
compared to the idealistic and ‘cleaned’ 
1 to 10 g/l under which normal reaction 
kinetics studies happen. Even explicit-
ly modeled, diffusion rates for species 
of considerably different physical size 
are often assumed to be identical, al-
though small molecules are much less 
affected by crowded conditions in re-
gards to diffusion than large ones such 
as protein complexes. This crowding 
also impacts signif icantly the reaction 
rate, as equilibrium rates constants for 
reactions under crowded conditions 
can increase by a magnitude of two or 
even threefold versus dilute concentra-
tions of macromolecules. 

(Dynamic) Cellular Automata and 
Agent-Based Models (D)CA
An alternative used to model the com-
plex workings of discrete molecules in 
living organisms is cellular automata 
(CA): the representation of individual 
molecules and the rules that govern 
their interactions as model for research. 
The tools in question are simple com-
puter simulation tools, used to model 
both temporal and/or spatio-temporal 
processes using discrete time and/or 
spatial steps. (D)CA was Invented in the 
late 1940’s by von Neumann and Ulam, 
who conceived of an inf inite lattice of 
cells, each capable of a certain limited 
number of states of being. Each cell is 
connected to a f inite number of neigh-
bors whose collective states at time 
tn induce it to assume a new state at 
time tn+1 in a specif ied manner. In bi-
ological systems the lattice represents 
the equivalent of the 2D or 3D spaces 
found, wherein each cell can contain 
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concentrations, cellular distribution 
of molecules, reactions rates, diffu-
sion rates, transport rates and degra-
dation rates. While many of these can 
be estimated f rom the literature or 
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Ordinary Differential Equations 
(ODEs)
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ticomponent chemical reactors, thus 
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connected to a f inite number of neigh-
bors whose collective states at time 
tn induce it to assume a new state at 
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one (or more) molecule or biological 
cell. Rules of varying complexity govern 
the interactions between adjacent or 
nearby molecules, either quite simply 
or instead , for example, in a complex 
manner, such as specifying binding 
of adjacent molecules with a certain 
probability, or such as the interactions 
of molecules occurring in an accurately 
realistic distance-dependent manner.
For these more complicated equations, 
Dynamic Cellular Automata (DCA) per-
mit “Brownian-like” motion of individu-
al molecules through the incorporation 
of a random number generator which 
selects a direction of motion in the next 
time step, where molecules may move 
one or more cells in a single time step 
based on the selected algorithm.

Issues
The main problem with DCA remains 
that although “chemical reaction rates 
are emergent properties of DCA mod-
els, molecular reaction probabilities de-
rived f rom conventional reaction rates 
are usually inaccurate due to problems 
in deriving biologically relevant reac-
tion rates that take into account mac-
romolecular crowding, extremely low 
concentrations and compartmental-
ization-use of a tested model is current-
ly perhaps an acceptable if not wholly 
accurate solution for the current time. 

ABM
Agent Based Modeling resembles Dy-
namic Cellular Automata, in that ABMs 
possess genes, proteins, metabolites or 
cells can all be reactive “agents”. Agents 
are allowed to interact with each oth-
er over space and time according to a 
def ined set of rules. The motions may 
be directed or random (Brownian) and 
the rules may be simple or highly com-
plex. “Unlike CA models, agent based 
systems do not formally require spa-

tial grids or synchronized time steps, 
although practical coding consider-
ations usually force these constraints 
on ABMs.” Space is usually represented 
in a lattice-f ree grid.
Although somewhat different, it is easy 
to spot that ABMs possess more or less 
the same constraints as DCA models: 
The extremely high number of agents 
within a realistic cell model precludes 
any possibility of completely realis-
tic output. In addition, we face similar 
problems of non-realistic forces of clus-
tering of molecules, wasted three-di-
mensional space within the cell, and, 
not least, the unrealistically sparse en-
vironment of most experimental “cells” 
that are used as models (by containing 
a very minute amount of internal mol-
ecules rather than the gargantuan rel-
ative amount held in a real cell). 

Hybrids
Of note is that hybrids possess one 
useful quality that stand-alone mod-
els do not: The use of fuzzy parameters 
to suggest either, roughly, measures 
of agents as simply “high”, “medium” 
or “low” as a means of more accurate-
ly assessing cell function in manner 
more similar to the looser def initions 
and requirements that real living cells 
(and organisms as a whole) tend to 
use, rather than highly accurate but 
somewhat non-adjusting numeric sit-
uations where a small imbalance may 
cause a rather signif icant chain re-
action to occur, thereby leading to a 
‘spread of the cancer or other hypo-
thetical illness’.

Early Lung Cancer Detection Using 
Nucleus Segementation Based 
Features
“”Lung cancer is the leading cancer 
killer among both men and women. 
Based on the statistics by the Ameri-
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can Cancer Society, it is believed there 
are 220,000 new cases, 160,000 deaths 
per year and the 5-year survival rate 
for all stages is 15%.” Of factors relat-
ed to survival rates, early detection re-
mains the most important, but usual 
cases of lung cancer do not display 
symptoms until the cancer has spread 
further into the body. This lowers the 
usual rate of early lung cancer detec-
tion to only 24%, requiring alternative 
methods to ensure better ways of ear-
ly detection. 
Of various available methods current-
ly in use, mass screening via Comput-
ed Tomography (CT) scan of the chest 
area would be a sign of signif icant im-
provement over other existing meth-
ods. Unfortunately, this method can-
not be recommended for general use 
due to the high cost and lack of safety 
guarantee due to radiation exposure. 
As an alternative to this and other 
costly methods, the study will exam-
ine the use of Tetrakis Carboxy Phenyl 
Porphine (TCPP) for early detection of 
lung cancer.
The samples study used 15 lung can-
cer patients and 13 normal patients. 
Cohort 1 consisted of 15 patients who 
had recently been diagnosed with lung 
cancer and had not undergone surgery 
or received adjuvant therapy for lung 
cancer. Cohort 2 included 13 subjects 
who were heavy smokers but did not 
have a history or diagnosis of lung can-
cer. (Heavy smoking” was def ined as 20 
pack-years or greater (i.e. 1 pack/day for 
20 years or 2 packs /day for 10 years).
The process began via collection of 
three days worth of morning sputum 
from the lungs via the triple morning 
cough method. The sputum was dyed 
with TCPP using Biomoda CyPath® 
assay and slides made accordingly for 
holding of samples. Sample slides are 
observed with a fluorescent micro-

scope to acquire images of cells. These 
images are then parsed via segmenta-
tion to yield pictures of single cells for 
further look at 71 specif ic features in 
the initial phase, such as shape, color 
and texture of cell. These f irst results 
obtained a fairly viable accuracy of 81%. 
The results were interpreted based on 
the characteristics of cancer cells, nor-
mal cells and necrotic cells. One dis-
criminator used for differentiating be-
tween lung cancer and normal cells is 
that cancer cells glow bright red when 
TCPP is added. 
The other main factor used in determi-
nation of cancer cells was the nucleus 
of the cell, which also plays a separately 
needed role in determination of cancer 
cells via its observable size and flores-
cence-the process was added to the 
initial results as additive progress via 
using nucleus segmentation to extract 
features of size and the individual (nu-
cleic) intensity from each cell. The mod-
if ied feature set consists of 79 features 
including Nucleus size, Nucleus perim-
eter, Ratio b/w nucleus size and cyto-
plasm, mean, variance, skewness and 
kurtosis of intensity values of nucleus 
and shape parameters. The addition of 
nucleic factors boosted accuracy to 88% 
(notably higher than any existing meth-
ods) and ensures consist monitorabili-
ty of treatment effectiveness, to detect 
the recurrence of lung cancer, and to 
identify patients who may need an in-
vasive diagnostic procedure. 
As seen f rom the results of one small 
sample study in detecting early can-
cer, the use of more cost-effective and 
quicker methods of biological treat-
ments via computation is the melting 
of traditional treatment with newer 
forms of technological eff iciency to en-
sure better clinical results and Lower 
mortality rates. Using the evolution-
ary pathways of the individual tumour 

44



2021 Volume 4 Issue 4Halit Mert Bİldirici

8

one (or more) molecule or biological 
cell. Rules of varying complexity govern 
the interactions between adjacent or 
nearby molecules, either quite simply 
or instead , for example, in a complex 
manner, such as specifying binding 
of adjacent molecules with a certain 
probability, or such as the interactions 
of molecules occurring in an accurately 
realistic distance-dependent manner.
For these more complicated equations, 
Dynamic Cellular Automata (DCA) per-
mit “Brownian-like” motion of individu-
al molecules through the incorporation 
of a random number generator which 
selects a direction of motion in the next 
time step, where molecules may move 
one or more cells in a single time step 
based on the selected algorithm.

Issues
The main problem with DCA remains 
that although “chemical reaction rates 
are emergent properties of DCA mod-
els, molecular reaction probabilities de-
rived f rom conventional reaction rates 
are usually inaccurate due to problems 
in deriving biologically relevant reac-
tion rates that take into account mac-
romolecular crowding, extremely low 
concentrations and compartmental-
ization-use of a tested model is current-
ly perhaps an acceptable if not wholly 
accurate solution for the current time. 

ABM
Agent Based Modeling resembles Dy-
namic Cellular Automata, in that ABMs 
possess genes, proteins, metabolites or 
cells can all be reactive “agents”. Agents 
are allowed to interact with each oth-
er over space and time according to a 
def ined set of rules. The motions may 
be directed or random (Brownian) and 
the rules may be simple or highly com-
plex. “Unlike CA models, agent based 
systems do not formally require spa-

tial grids or synchronized time steps, 
although practical coding consider-
ations usually force these constraints 
on ABMs.” Space is usually represented 
in a lattice-f ree grid.
Although somewhat different, it is easy 
to spot that ABMs possess more or less 
the same constraints as DCA models: 
The extremely high number of agents 
within a realistic cell model precludes 
any possibility of completely realis-
tic output. In addition, we face similar 
problems of non-realistic forces of clus-
tering of molecules, wasted three-di-
mensional space within the cell, and, 
not least, the unrealistically sparse en-
vironment of most experimental “cells” 
that are used as models (by containing 
a very minute amount of internal mol-
ecules rather than the gargantuan rel-
ative amount held in a real cell). 

Hybrids
Of note is that hybrids possess one 
useful quality that stand-alone mod-
els do not: The use of fuzzy parameters 
to suggest either, roughly, measures 
of agents as simply “high”, “medium” 
or “low” as a means of more accurate-
ly assessing cell function in manner 
more similar to the looser def initions 
and requirements that real living cells 
(and organisms as a whole) tend to 
use, rather than highly accurate but 
somewhat non-adjusting numeric sit-
uations where a small imbalance may 
cause a rather signif icant chain re-
action to occur, thereby leading to a 
‘spread of the cancer or other hypo-
thetical illness’.

Early Lung Cancer Detection Using 
Nucleus Segementation Based 
Features
“”Lung cancer is the leading cancer 
killer among both men and women. 
Based on the statistics by the Ameri-

9

Computational Biology: Introduction, Methods, and a Means of Treating Cancer Patients

can Cancer Society, it is believed there 
are 220,000 new cases, 160,000 deaths 
per year and the 5-year survival rate 
for all stages is 15%.” Of factors relat-
ed to survival rates, early detection re-
mains the most important, but usual 
cases of lung cancer do not display 
symptoms until the cancer has spread 
further into the body. This lowers the 
usual rate of early lung cancer detec-
tion to only 24%, requiring alternative 
methods to ensure better ways of ear-
ly detection. 
Of various available methods current-
ly in use, mass screening via Comput-
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not be recommended for general use 
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lung cancer.
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from the lungs via the triple morning 
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with TCPP using Biomoda CyPath® 
assay and slides made accordingly for 
holding of samples. Sample slides are 
observed with a fluorescent micro-

scope to acquire images of cells. These 
images are then parsed via segmenta-
tion to yield pictures of single cells for 
further look at 71 specif ic features in 
the initial phase, such as shape, color 
and texture of cell. These f irst results 
obtained a fairly viable accuracy of 81%. 
The results were interpreted based on 
the characteristics of cancer cells, nor-
mal cells and necrotic cells. One dis-
criminator used for differentiating be-
tween lung cancer and normal cells is 
that cancer cells glow bright red when 
TCPP is added. 
The other main factor used in determi-
nation of cancer cells was the nucleus 
of the cell, which also plays a separately 
needed role in determination of cancer 
cells via its observable size and flores-
cence-the process was added to the 
initial results as additive progress via 
using nucleus segmentation to extract 
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(notably higher than any existing meth-
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the recurrence of lung cancer, and to 
identify patients who may need an in-
vasive diagnostic procedure. 
As seen f rom the results of one small 
sample study in detecting early can-
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forms of technological eff iciency to en-
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ary pathways of the individual tumour 

45



Journal of Next Frontier for Life Sciences and AIHalit Mert Bİldirici

10

found in the patient as a guideline for 
which method or mixed methods to 
use for a certain context, allowing for a 
certain small margin of error to account 
for currently improbably complex cal-
culations of a completely realistic cell 
structure, we may deem that current 
usage of computational biology serves 
an eff icient role in the experimental 
laboratory, but requires greater appli-
cation within more mainstream appli-
cations and areas of medical progress 
where it matters most, such as cancer, 
via changing attitudes that view it, not 
as a simple skewering of traditional bi-
ology via a computer model, but as a 
modern way to speed up and predict 
bodily process, especially of cells and 
other small-scale models needed in 
common diseases.
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Granular Metamaterials for 
Soft Robotic Applications

Abstract
This summary presents our current re-
search studies of granular metamate-
rials for soft robotic applications. Soft 
robotics show great promise for im-
proving the manipulation and grasp-
ing of objects with complex shapes. 
Traditional robotic grippers use rigid, 
multi-f ingered mechanical manipu-
lators. However, these approaches do 

not perform well for gripping brittle, 
complex-shaped, and deformable ob-
jects. Recent research has shown that 
soft robotic grippers made of granu-
lar materials conf ined within an elas-
tic bag have dramatically improved 
performance. When the soft gripper 
presses on an object, it takes the shape 
of the object because the enclosed 
grains can rearrange. Then, a vacuum 
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can be created within the elastic bag, 
which causes the granular material to 
jam and become attached to the ob-
ject, and thus the object can be picked 
up by the gripper without any senso-
ry force feedback. Proof-of-principle 
studies of such soft robotic grippers 
have been performed, but there is cur-
rently no fundamental understanding 
of these systems that would allow us 
to predict their performance for a wide 
range of tasks. In this research, we car-
ry out experimental and computation-
al studies of model granular metama-
terials (granular cylinders conf ined by 
elastic bands) to better understand the 
types of jammed conf igurations that 
can occur in these systems.

Keywords: Granular metamaterials, 
soft robotics, jamming.

1. Introduction
With their complex nature and wide 
range of pattern forming behaviors, 
granular materials are used in a vari-
ety of applications in industry. Their re-
versible behavior, where they transition 
from a fluid-like state to a jammed one, 
makes them suitable for numerous ap-
plications in engineering, such as soft 

robotics. Applications in soft robotics 
include grasping objects with complex 
shapes, as well as delicate or sharp ob-
jects, locomotion on variable and com-
plex terrains, and the ability to change 
shape to enter confined spaces. During 
natural disasters when buildings col-
lapse and entrance to buildings is limit-
ed, soft robots made up of granular ma-
terials (such as soft robotic snakes) can 
change their shape to enter collapsed 
buildings for search and rescue. Such 
robots can be used for underwater ap-
plications as well [1]. There have been 
several recent reviews of soft robotic 
applications [2, 3, 4, 5, 6, 7].

One specif ic and rather new appli-
cation of granular metamaterials is soft 
robotic grippers, where robotic manip-
ulators use a flexible membrane f illed 
with granular materials. The working 
mechanism of jamming grippers al-
lows them to grip onto different shaped 
objects by suction (by applying vacu-
um) while their elastic membrane al-
lows them to mold around any shape. 
First, the gripper approaches an object 
in a soft state, then it deforms around 
the object, and air is sucked out of the 
membrane so that the gripper can hold 
onto the object [8]. See Figure 1.

Figure 1. 
Jamming-based gripper mechanism from Ref. [8].
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Granular metamaterials for soft robotic applications

When the vacuum is established, 
the grains become jammed and apply 
a range of forces around the object 
they grip onto, holding onto it strong-
ly [8]. The arrangements of the grains 
inside the grippers as the vacuum is 
established are unknown. There have 
been previous computational and ex-
perimental studies characterizing the 
jamming transitions in systems with 
particles conf ined by rigid boundaries 
[9, 10, 11, 12, 13, 14]. Such jamming tran-
sitions occur when granular materials 
reach a certain packing f raction, pre-
venting particle motion.

Yet there have been no studies an-
alyzing jamming in systems where 
particles are conf ined within elastic 
bound- aries. The aim of our research 
is to carry out experimental and com-
putational studies of granular cylin-
ders conf ined by deformable bound-
aries to determine t h e types of grain 
conf igurations that can occur.

2. Methodology
To analyze the grain arrangements 
and characterize the jamming of the 
granular metamaterials inside the soft 
robotic grippers, we carry out simula-
tions and experiments on granular cyl-
inders conf ined by a rubber band. We 
carry out experiments, as well as Mat-
lab simulations of f rictionless disks 
to determine if f riction between the 
granular cylinders plays an important 
role in determining the particle con-
f igurations within the elastic band.

For the experiments, we analyze 
the conf igurations for N = 8, 9, and 10 
granular cylinders. We use a 3D print-
er to generate uniform cylinders. The 
cylinders have following dimensions: 
Height: 3 cm, Radius: 0.95cm. The 3D 
printer we used in this study and the 
printed cylinders are shown in Figure 2.

The rubber band we used for the 
experiments is 19.8 cm in length (un-
stretched) and has a spring constant of 
k = 19.3 N/m, which we calculated f rom 
experiments using Hooke’s Law. See 
Figure 3.

Figure 2. 
3D Printer and 3D-Printed Granular Cylinders.

Figure 3. 
a) Experimental data table for the amount of 
stretch of the rubber band for different test 
masses. b) The force required to stretch the 
rubber band to a given change in length.

b. Estimation of the spring constant of the 
rubber band

a. Experimental Data
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As can be seen from the Figure 3, 
the force required to stretch the rubber 
band is roughly linear in the change in 
length of the rubber band (the amount 
of stretch) with a slope of k = 19.3N/m.

The rubber band we used with an 
unstretched length = 19.8 cm required a 
minimum of 8 cylinders to stretch it. For 
N = 8 cylinders, we put the rubber band 
around the cylinders and applied differ-
ent forces to the outside of the rubber 
band to obtain different configurations. 
We recorded the images of 10 - 15 con-
f igurations and repeated these steps 
by adding more cylinders until N = 10. 
We analyzed more than 50 distinct con-
f igurations, eliminating configurations 
that we observed more than once.

After obtaining all of the images of 
these configurations, we calculated the 
shape parameter for each configuration 
of granular cylinders. The shape param-
eter A for each configuration is given by

where a is the area enclosed by the 
conf iguration, and P is the perimeter 
of elastic band surrounding the con-
f iguration. Note that f rom Eq. (1), A = 
1 for circles and A > 1 for non-circular 
shapes. The shape parameters for two 
different N = 8 particle conf igurations 
are shown in Figure 4 to demonstrate 
the computation of A for both cases. 
Note that the more circular conf igura-
tion has a shape parameter A closer to 
1, (A = 1.055), whereas the second con-
f iguration with noncircular shape has a 
shape parameter of A = 1.238.

When calculating the shape param-
eter A for different conf igurations, we 
exclude the gaps formed between the 
cylinders and the rubber band and fo-
cus on polygons formed from the cen-
ters of the cylinders. This calculation 
w a s performed manually for each 
case and an example of this method is 
shown in Figure 5 for 3 different N=8 
conf igurations.

(1)A =
p2

4πa

Figure 4. 
a) Conf iguration with N=8 Particles with Shape Parameter A =1.055. b) Conf iguration with N=8 
Particles with Shape Parameter A=1.238.

a. b.
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When the vacuum is established, 
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Height: 3 cm, Radius: 0.95cm. The 3D 
printer we used in this study and the 
printed cylinders are shown in Figure 2.

The rubber band we used for the 
experiments is 19.8 cm in length (un-
stretched) and has a spring constant of 
k = 19.3 N/m, which we calculated f rom 
experiments using Hooke’s Law. See 
Figure 3.
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After calculating and recording 
the shape parameters using the same 
method as shown in Figure 5 for differ-
ent number of particles, N= 8, 9, and 10, 
we also recorded the number of con-
tacts (Nc) with the boundary (elastic 

band) for each conf iguration. The re-
sults for these experiments are given 
in Figure 6 (where Nc represents the 
number of contacts and a8, a9 and 
a10 represent shape parameters in this 
Figure).

Figure 5. 
Figure 5: ( a ) - ( c ) Polygons formed by connecting the centers of the cylinders in three 
conf igurations for N=8.

a.

c.

a.

Figure 6.
Experimental Results
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We then carried out computer sim-
ulations for f rictionless granular disks 
conf ined by an elastic band in 2D. We 
compare the simulation results with 
the experimental results. We obtained 
at least 10 different conf igurations for 
each system size, N = 8, 9 and 10. For 
each simulation, we start the simula-
tion with different initial positions of 
the disks, so that we end up with dif-
ferent conf iguration for each case. We 
then calculated the shape parameters 
and recorded the number of contacts 

for each conf iguration and the results 
are displayed in Figure 7.

To better analyze the experimen-
tal and simulation results, we plot the 
shape parameters (A) versus the num-
ber of contacts (Nc) for each conf igu-
ration on the same graph for different 
particle numbers N=8, 9, and 10. Com-
parison of the experimental results 
with the simulation results for the 
three different numbers of particles 
N=8 ,9 and 10, are shown in Figures 8,9 
and 10, respectively.

Figure 7.
Simulation Results

Figure 8.
Shape Parameters for 
Experiments and Simulations 
for N=8
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Note that for the simulation results 
for N = 10, we observed a contact num-
ber of Nc = 8 for all cases except for one 
case which had a contact number of 
9. This is why we have highly populat-
ed data points at Nc = 8 for simulation 
tests in Figure 10. It is clearly seen from 
the above Figures 8-10 that the simu-
lation tests resulted in configurations 
with signif icantly smaller shape param-
eters (A) as compared to the shape pa-
rameters of experimental tests. We also 
note that the number of contacts (Nc) 
for configurations obtained via simula-

tions are also greater than the number 
of contacts obtained in experimental 
tests. This is mainly due to the unmod-
eled friction between the cylinders in 
the simulation studies, whereas friction 
is present in the experimental tests.

3. Results and Discussion
We f ind that the granular cylinders can 
take on a range of different configura-
tions with different shapes within the 
elastic band, all of which are jammed. 
When comparing the experimental and 
simulation results, we observe that con-

Figure 9.
Shape Parameters for 
Experiments and Simulations 
for N=9

Figure 10.
Shape Parameters for 
Experiments and Simulations 
for N=10
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f igurations obtained from the experi-
ments have fewer contacts and a larger 
range of shape parameters compared 
to configurations obtained from the 
simulations. The configurations from 
the simulations have greater contact 
numbers and more circular shapes.

The reason behind this difference is 
that without the presence of f riction, 
there are only normal forces between 
the cylinders and between the elastic 
band and cylinders, hence the granu-
lar cylinders can easily slide. However, 
the presence of f rictional contacts of 
the cylinders in the experimental stud-
ies stabilizes the jammed packings 
and non-circular shapes can easily be 
formed with fewer contacts between 
the cylinders and the cylinders and the 
elastic band.

4. Conclusions and Future 
Directions
In future work, we propose to car ry out 
similar studies in three dimensions, 
where an elastic bag, such as a balloon 
is f illed with spherical grains. Using ex-
periments, we can calculate the shape 
parameters of the jammed conf igura-
tions of spherical particles by taking 
multiple images f rom different views 
and using image processing. Using 
computer simulations, we can deter-
mine the granular conf igurations that 
correspond to each shape of the elastic 
bag. We will also include f rictional in-
teractions between the spherical parti-
cles and between the particles and the 
elastic container.
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Introduction 
“Cancer is a broad term for a class of 
diseases characterized by abnormal 
cells that grow and invade healthy 
cells in the body.  Breast cancer starts 
in the cells of the breast as a group of 
cancer cells that can then invade sur-
rounding tissues or spread (metasta-
size) to other areas of the body.”İ We 
have been trying to create and treat 
cancer with multitude therapies and 
drugs and worldwide efforts in this re-
gard have meant trillions of dollars in 
contributions to science. With the in-
troduction of artif icial intelligence into 
the cancer research arena it could be 
argued that drug development will be 
easier and more precise. Studies con-
ducted, like that of Professor Tate at 
Imperial College London, who works 
on protein mapping for potential new 
cancer drugs could mean something 

new can be added to the equation.İİ He 
mentions the process of tagging which 
could be applied using artif icial intelli-
gence. “1 in 2 people will develop some 
form of cancer during their lifetime. In 
the UK, the 4 most common types of 
cancer are: Breast, lung, prostate, and 
bowel cancer” out of the potential 200 
types (Figure 1 and 2).İİİ When cancer 
cells over reproduce and form a mass 
this is known as a tumour and is usu-
ally where the cancer has started to 
form. When the cancer spreads to oth-
er parts of the body and forms a mass, 
it is known as a “secondary tumour or 
metastasis.” Moreover, it is not only the 
formation of a tumour that can cause 
symptoms in a cancer patient, but 
symptoms may also arise f rom prob-
lems with “blood circulation, lymphat-
ic and immune systems, and the hor-
mone system” (Figure 3).İV

Image 1. 
Cancer cell identif ication, Cancer Research UKV

Image 2. 
Cancer cells reproducing, Cancer Research UKVİ

Image 3. 
Cancer spreading to other parts 
of the body, Cancer Research UKVİİ
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Breast Cancer Imaging and Artif icial Intelligence

Breast Cancer, as the focus of this 
paper, is the most common type of can-
cer that affects women. “Most women 
diagnosed with breast cancer are over 
the age of 50, but younger women can 
also get breast cancer.”Vİİİ The most im-
portant aspect of treating cancer comes 
with its early diagnosis and this is where 
artificial intelligence (AI) enters cancer 
research. While the symptoms and caus-
es of breast cancer cannot be ignored it 
is the aim of this paper to address the 
importance of detecting and diagnosing 
all factors that may come into question.

Artif icial Intelligence for Breast 
Cancer Screening
Screening for breast cancer is the most 
effective way to prevent cancer from be-
coming life-threatening and to treat pa-
tients earlier for a more effective recov-
ery. “Mammographic screening, where 
X-ray images of the breast are taken, 
is the most commonly available way of 
finding a change in your breast tissue 
(lesion) at an early stage.”İX Perhaps AI 
could be more effective and offer less in-
vasive testing for women and offer fewer 
tests for women aged 50-70 than the re-
quired one every three years.X

Artif icial intelligence, or AI, was de-
veloped in the 1950s while imaging dat-
ed back earlier to the late 1800s when 
German professor Wilhelm Rontgen in-
vented medical imaging (The concept 
of medical imaging began in 1895 with 
the invention of the x-ray by a German 
professor of physics, Wilhelm Rontgen.
Xİ Since the 1970s we have had CT and 
MRI scanners (Computed Tomography 
and Magnetic Resonance Imaging).Xİİ It 
could be argued that AI has been used 
with medical imaging since the 1970s 
since the theoretical ideas f rom John 
McCarthy, f rom Stanford University, ex-
isted prior. He called AI “...the science 
and engineering of making intelligent 

machines, especially intelligent com-
puter programs.”Xİİİ Moreover, “AI is a 
f ield, which combines computer sci-
ence and robust data sets, to enable 
problem solving.”XİV As subsets of AI, 
machine learning and deep learning 
have a primary focus in the literature 
about cancer. These two subsets pri-
marily function on algorithms that are 
programmed by computer scientists to 
perform certain tasks such as data pro-
cessing through images and prediction 
making. Applications of Artif icial Intel-
ligence can be primarily useful in im-
aging with the use of computer vision 
“technology [that] enables computers 
and systems to derive meaningful in-
formation f rom digital images, videos 
and other visual inputs, and based 
on those inputs, it can take action.”XV 
Computer vision “is powered by con-
volutional (complex) neural networks” 
and can be applied to “photo tagging…
[in] radiology imaging in healthcare” 
and other areas.XVİ Machine Learning 
is the most cited application of AI for 
cancer imaging. “Machine learning is a 
subf ield of AI that gives computers the 
ability to learn without explicitly being 
programmed.”XVİİ Professor Aleksand-
er Madry, of the Massachusetts Insti-
tute of Technology, says that “machine 
learning is changing, or will change, 
every industry, and leaders need to un-
derstand the basic principles, the po-
tential, and [its] limitations.”XVİİİ Creat-
ed by Arthur Samuel in 1950 machine 
learning is about enabling machines to 
learn (with algorithms) by themselves.
XİX Machine learning has the potential 
to make breakthroughs in cancer re-
search especially used for mammo-
grams. Thomas Malone argues that 
machine learning is the best type of AI 
because it can process big data.XX

This could be a great response to 
people who think that using AI in the 
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mammogram screening process will 
make a lot of people lose their jobs. 
While unemployment is an issue as we 
further develop AI technologies, many 
companies are using machine learning 
in several ways to promote healthcare 
innovations. These AI applications are 
readily found in medical imaging and 
diagnostics. Machine learning pro-
grams can be trained to examine med-
ical images or other information and 
look for certain markers of illness, like a 
tool that can predict cancer risk based 
on a mammogram. 

Artif icial intelligence entered the 
f ield of medicine in the early 1970s. To-
day, AI can be used for multitude pur-
poses in medicine and the healthcare 
industry such as for “online scheduling 
of appointments, online check-ins in 
medical centres, digitization of medi-
cal records, reminder calls for follow-up 
appointments and immunization dates 
for children and pregnant females to 
drug dosage algorithms and adverse 
effect warnings while prescribing mul-
tidrug combinations.” (See pie chart)

Radiology is primarily where AI can 
be in medical applications to treat and 
diagnose diverse diseases and illness-
es. So much so that they have become 
an “indispensable component of the 
work environment with the origin of 
picture archiving and communication 
systems.”XXİİ CAD, or computer aided 
design, is useful in screening of breast 
cancer, but is known for its errors in 
terms of its uses in diagnostics, predic-
tion of tumours and accuracy. It tends 
to output “false positives” in diagnosis 
and create inaccurate information for 
physician treatment as a result.XXİİİ AI 
should increase clinical administrative 
productivity, decrease the human la-
bour involved with primary care and 
increase “productivity, precision, and 
eff icacy.”XXİV

Specif ically, imaging using AI for 
cancer can reduce the amount of wrong 
diagnosis, to help reduce the number 
of cases where a diagnosis would have 
been missed by a physician and to 
help speed up diagnosis time through 
the double-screening process. AI in 

Image 4. 
The Uses of AI in healthcare.XXİ
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mammograms, according to Professor 
the Lord Ara Darzi of Imperial College 
London argues that “Screening pro-
grammes remain one of the best tools 
at our disposal for catching cancer 
early and improving outcomes for pa-
tients, but many challenges remain – 
not least the current volume of images 
radiologists must review.”XXV In the UK, 
cancer risks increase with women’s 
age, and it is clinically proven that one 
out of eight women will be diagnosed 
with cancer and the early detection of 
such cancers remains problematic.XXVİ 
AI, while it offers potential increase in 
prediction of tumour size and location 
for breast cancer and better imag-
ing quality using its quantitative pro-
cess, it still gives “similar level of ac-
curacy to human doctors,” “reduction 
in incorrectly identif ied cases (5.7% 
in UK),” and “identif ied cases where 
cancer was missed (9.4% in UK).”XXVİİ In 

this area of imaging what is known as 
the “double reading process” revolves 
around the double interpretation of 
imaging results by two physicians, and 
in this case, AI was found to decrease 
interpretation through workload by 
88%.XXVİİİ

AI screening integrated together 
with human screening can 1. Help re-
duce the amount of wrong diagnosis, 2. 
Help reduce the number of cases where 
a diagnosis would have been missed, 
3. Help speed up the double-screen-
ing process (which in turn speeds up 
the diagnosis time of a patient, which 
could be crucial in the treatment pro-
cess. Using AI for mammogram detec-
tion is still a new and developing tech-
nology. Therefore, as the researchers 
themselves have pointed out, there 
still needs to be a lot of research done 
to move this technology into our every-
day healthcare practices.

Image 5. 
Development of an AI system to detect cancer in screening mammograms.XXİX
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Image f ive depicts a study that 
evaluates the performance of AI tech-
nology in breast cancer detection in 
the UK and the US. The results of the 
test reveal that reading of imaging re-
sults were more successful with the AI 
than with physician alone.XXX “As the 
data sets below show, the ai system 
achieves superiority, if not, non-inferi-
ority for both sensitivity and specif icity 
f rom the mean human reader.”XXXİ

 One important note to make is that 
these results also reveal that “no dif-
ference in the distribution of cancers 
detected by the AI system and human 
readers” were madeXXXİİİ In the analysis 
of the US data the focus seems to be on 
“the identif ication of invasive cancers 
rather than in situ cancer.”XXXİV Howev-
er, as was reported in the US case study 
of imaging for breast cancer detection, 
there were cases when the AI and hu-
man interpretation got mixed up in 

terms of accuracy and suggested that 
these roles, between AI and the human 
physician in radiology, were compli-
mentary.XXXV Limitations in both these 
country-based studies prove that AI is 
still far more superior to human inter-
pretation and offers doctors with less 
labour around the meanings of imag-
ing while also exceeding their human 
capabilities at times, but they both 
prove that improved AI technologies 
f rom diverse manufacturers would be 
benef icial in increasing the statistical 
rates of interpreting imaging.XXXVİ

Questions posed around the accu-
racy and use of AI could include why is 
it that we cannot program one AI us-
ing UK data and another AI using the 
US data and run them coexistent? Why 
not create an AI that is able to double 
read just as humans can? In this way 
the graphical data could show the re-
duction of false diagnosis (see image 7).  

Image 6.
Performance of the AI system and clinical readers in breast cancer prediction. A. The ROC 
curve of the AI system on the UK screening data. B. The ROC curve of the AI system on the US 
screening data.XXXİİ
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Artif icial Intelligence Ethics in 
Breast Cancer Processing 
The f igure below stands for the ad-
vantages and disadvantages of using 
AI for breast cancer screening. While 
the use of AI for patients, in terms of 
early detection may improve disease 
treatment and outcomes, it creates 
problems when it comes to giving pa-
tients the empathy, sense of the hu-
man touch and emotional intelligence. 
The advantages, however, are notewor-
thy in that AI supplies eff iciency, accu-
racy and precision through machine 
learning and deep learning programs. 
Moreover, in the clinical administrative 
area, AI offers decreased workload for 
staff, and it increases patient face-to-
face time while also saving patients on 
costs and offering them better moni-
toring. What is excluded f rom the f ig-

ure below is the aspect of the ethics of 
consent and security of health informa-
tion which is a problem that continues 
to challenge the health care industry 
with the growing data and resultant 
need for AI applications. 

Image 7.
Quantitative evaluation of reader and AI system 
performance with a 12-month follow-up interval 
for ground-truth cancer-positive status.XXXVİİ

Image 8.
Advantages and disadvantages of artif icial 
intelligence in medicine.XXXVİİİ
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Studies conclude that AI will nev-
er replace the human doctor around 
mammography:

“In 2016, the Digital Mammography 
DREAM Challenge was done where 
several networks of computers were 
connected, and the goal was to estab-
lish an AI-based algorithm by review-
ing 640,000 digital mammograms. The 
best which was achieved was a specif ic-
ity of 0.81, sensitivity of 0.80, area under 
receiver operator curve was 0.87, which 
is approximated to bottom 10% radiol-
ogists. In conclusion, AI has potential, 
but it is unlikely that AI will replace doc-
tors out rightly.XXXİX

AI would be an integral part of med-
icine in the future. Hence, it is import-
ant to train the new generation of med-
ical trainees about the concepts and 
applicability of AI and how to function 
eff iciently in a workspace alongside 
machines for better productivity along 
with cultivating soft skills like empathy 
in them.

Conclusion
Cancer has been a part of our lives for 
decades and breast cancer has affected 
many women globally. In terms of its di-
agnosis and treatment, cancer has been 
one of the most challenging diseases 
to cure. While no cure may be in sight 
soon it is with much optimism that we 
use AI, for its powerful classif ications 
and prediction purposes, to detect tu-
mours early to help physicians treat the 
disease faster to save many lives. AI in-
tegrated with machine and deep learn-
ing have offered the most promising re-
sults in imaging to reduce the numbers 
of wrong diagnosis, reduce number of 
patients who were missed and to help 
speed up the process of imaging results 
that are also more correct. It is import-
ant that medical staff are more literate 

and comfortable with AI for the future 
of health care. Even if AI could physical-
ly and mentally replace humans, as de-
velopments are continually be made in 
affective AI, emotion sensing AI, it is not 
likely that the near future will be able 
to address fully the needs of humans in 
health care. Even if AI were to become 
fully autonomous and conscious, more 
human-like, if humans exist, we will al-
ways have a relationship with our tech-
nologies in every part of our lives, and 
this includes health.

References 
(n.d.). Retrieved from https://www.nhs.uk/

conditions/breast-cancer/
[Photographer], T. A., Myers, M., & Producer], 

M. S. (2017, December 14). Experts explain 
the potential for new cancer drugs and 
treatments: Imperial News: Imperial College 
London. Retrieved from https://www.imperial.
ac.uk/news/183706/experts-explain-potential-
cancer-drugs-treatments/

About Cancer. (n.d.). Retrieved from https://www.
cancerresearchuk.org/about-cancer/what-is-
cancer.

Amisha, Malik, P., Pathania, M., & Rathaur, V. K. 
(2019, July). Overview of artificial intelligence 
in medicine. Retrieved from https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC6691444/

Brown, S. (2021, April 21). Machine learning, 
explained. Retrieved from https://mitsloan.mit.
edu/ideas-made-to-matter/machine-learning-
explained

By: IBM Cloud Education. (n.d.). What is Artificial 
Intelligence (AI)? Retrieved from https://
www.ibm.com/cloud/learn/what-is-artificial-
intelligence

OHare, R. (2020, January 01). Artificial intelligence 
could help to spot breast cancer: Imperial 
News: Imperial College London. Retrieved 
from https://www.imperial.ac.uk/news/194506/
artificial-intelligence-could-help-spot-breast/

Rubin, A., & Rubin, A. (2017, April 06). History of 
Medical Imaging - A Brief Overview. Retrieved 
from https://www.flushinghospital.org/
newsletter/history-of-medical-imaging-a-
brief-overview/

What Is Cancer? (2019, September 30). Retrieved 
from https://www.nationalbreastcancer.org/
what-is-cancer/

9

Breast Cancer Imaging and Artif icial Intelligence

Endnotes
i  https://www.nationalbreastcancer.org/

what-is-cancer/
ii  https://www.imperial.ac.uk/news/183706/

experts-explain-potential-cancer-
drugstreatments/

iii  https://www.cancerresearchuk.org/
about-cancer/what-is-cancer.

iv Ibid.
v  Ibid.
vi  Ibid.
vii  Ibid.
viii  https://www.nhs.uk/conditions/breast-

cancer/
ix  Ibid.
x  Ibid.
xi  https://www.flushinghospital.org/

newsletter/history-of-medical-imaging-
a-brief-overview/

xii  See endnote 5.
xiii  https://www.ibm.com/cloud/learn/what-

is-artificial-intelligence
xiv  Ibid.
xv  Ibid.
xvi  Ibid.
xvii  https://mitsloan.mit.edu/ideas-made-to-

matter/machine-learning-explained
xviii  Ibid.
xix  Ibid.
xx  Ibid.
xxi  https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC6691444/
xxii  Ibid.
xxiii  Ibid.
xxiv  Ibid.
xxv  https://www.imperial.ac.uk/news/194506/

artificial-intelligence-could-help-spot-
breast/

xxvi  Ibid.
xxvii  Ibid.
xxviii  Ibid.
xxix Ibid.
xxx  Ibid.
xxxi  Ibid.
xxxii Ibid.
xxxiii  Ibid.
xxxiv  Ibid.
xxxv  Ibid.
xxxvi  Ibid.
xxxvii  Ibid.
xxxviii  See endnote 21.
xxxix  See endnote 21.

64



2021 Volume 4 Issue 4Mert Albeyoglu

8

Studies conclude that AI will nev-
er replace the human doctor around 
mammography:

“In 2016, the Digital Mammography 
DREAM Challenge was done where 
several networks of computers were 
connected, and the goal was to estab-
lish an AI-based algorithm by review-
ing 640,000 digital mammograms. The 
best which was achieved was a specif ic-
ity of 0.81, sensitivity of 0.80, area under 
receiver operator curve was 0.87, which 
is approximated to bottom 10% radiol-
ogists. In conclusion, AI has potential, 
but it is unlikely that AI will replace doc-
tors out rightly.XXXİX

AI would be an integral part of med-
icine in the future. Hence, it is import-
ant to train the new generation of med-
ical trainees about the concepts and 
applicability of AI and how to function 
eff iciently in a workspace alongside 
machines for better productivity along 
with cultivating soft skills like empathy 
in them.

Conclusion
Cancer has been a part of our lives for 
decades and breast cancer has affected 
many women globally. In terms of its di-
agnosis and treatment, cancer has been 
one of the most challenging diseases 
to cure. While no cure may be in sight 
soon it is with much optimism that we 
use AI, for its powerful classif ications 
and prediction purposes, to detect tu-
mours early to help physicians treat the 
disease faster to save many lives. AI in-
tegrated with machine and deep learn-
ing have offered the most promising re-
sults in imaging to reduce the numbers 
of wrong diagnosis, reduce number of 
patients who were missed and to help 
speed up the process of imaging results 
that are also more correct. It is import-
ant that medical staff are more literate 

and comfortable with AI for the future 
of health care. Even if AI could physical-
ly and mentally replace humans, as de-
velopments are continually be made in 
affective AI, emotion sensing AI, it is not 
likely that the near future will be able 
to address fully the needs of humans in 
health care. Even if AI were to become 
fully autonomous and conscious, more 
human-like, if humans exist, we will al-
ways have a relationship with our tech-
nologies in every part of our lives, and 
this includes health.

References 
(n.d.). Retrieved from https://www.nhs.uk/

conditions/breast-cancer/
[Photographer], T. A., Myers, M., & Producer], 

M. S. (2017, December 14). Experts explain 
the potential for new cancer drugs and 
treatments: Imperial News: Imperial College 
London. Retrieved from https://www.imperial.
ac.uk/news/183706/experts-explain-potential-
cancer-drugs-treatments/

About Cancer. (n.d.). Retrieved from https://www.
cancerresearchuk.org/about-cancer/what-is-
cancer.

Amisha, Malik, P., Pathania, M., & Rathaur, V. K. 
(2019, July). Overview of artificial intelligence 
in medicine. Retrieved from https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC6691444/

Brown, S. (2021, April 21). Machine learning, 
explained. Retrieved from https://mitsloan.mit.
edu/ideas-made-to-matter/machine-learning-
explained

By: IBM Cloud Education. (n.d.). What is Artificial 
Intelligence (AI)? Retrieved from https://
www.ibm.com/cloud/learn/what-is-artificial-
intelligence

OHare, R. (2020, January 01). Artificial intelligence 
could help to spot breast cancer: Imperial 
News: Imperial College London. Retrieved 
from https://www.imperial.ac.uk/news/194506/
artificial-intelligence-could-help-spot-breast/

Rubin, A., & Rubin, A. (2017, April 06). History of 
Medical Imaging - A Brief Overview. Retrieved 
from https://www.flushinghospital.org/
newsletter/history-of-medical-imaging-a-
brief-overview/

What Is Cancer? (2019, September 30). Retrieved 
from https://www.nationalbreastcancer.org/
what-is-cancer/

9

Breast Cancer Imaging and Artif icial Intelligence

Endnotes
i  https://www.nationalbreastcancer.org/

what-is-cancer/
ii  https://www.imperial.ac.uk/news/183706/

experts-explain-potential-cancer-
drugstreatments/

iii  https://www.cancerresearchuk.org/
about-cancer/what-is-cancer.

iv Ibid.
v  Ibid.
vi  Ibid.
vii  Ibid.
viii  https://www.nhs.uk/conditions/breast-

cancer/
ix  Ibid.
x  Ibid.
xi  https://www.flushinghospital.org/

newsletter/history-of-medical-imaging-
a-brief-overview/

xii  See endnote 5.
xiii  https://www.ibm.com/cloud/learn/what-

is-artificial-intelligence
xiv  Ibid.
xv  Ibid.
xvi  Ibid.
xvii  https://mitsloan.mit.edu/ideas-made-to-

matter/machine-learning-explained
xviii  Ibid.
xix  Ibid.
xx  Ibid.
xxi  https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC6691444/
xxii  Ibid.
xxiii  Ibid.
xxiv  Ibid.
xxv  https://www.imperial.ac.uk/news/194506/

artificial-intelligence-could-help-spot-
breast/

xxvi  Ibid.
xxvii  Ibid.
xxviii  Ibid.
xxix Ibid.
xxx  Ibid.
xxxi  Ibid.
xxxii Ibid.
xxxiii  Ibid.
xxxiv  Ibid.
xxxv  Ibid.
xxxvi  Ibid.
xxxvii  Ibid.
xxxviii  See endnote 21.
xxxix  See endnote 21.

65



/NextFrontier

2021 Volume 4 Issue 4

J O U R N A L  O F  N E X T  F R O N T I E R  F O R  L I F E  S C I E N C E S  A N D  A I


